LARA

Example of using propositional resolution

Prove a tautology from examples in this lecture, e.g. left-to-right direction of

\begin{equation*}
    ((p \rightarrow q) \land\ ((\lnot p) \rightarrow r)) \leftrightarrow ((p \land q)\ \lor\ ((\lnot p) \land r))
\end{equation*}

Left to Right

Initial formula:

\begin{equation*}
    ((p \rightarrow q) \land\ ((\lnot p) \rightarrow r)) \rightarrow ((p \land q)\ \lor\ ((\lnot p) \land r))
\end{equation*}

Negation of the formula:

\begin{equation*}
    ((p \rightarrow q) \land\ ((\lnot p) \rightarrow r)) \land \lnot ((p \land q)\ \lor\ ((\lnot p) \land r))
\end{equation*}

Eliminate implication:

\begin{equation*}
    ((\lnot p \lor q) \land\ (p \lor r)) \land \lnot ((p \land q)\ \lor\ ((\lnot p) \land r))
\end{equation*}

Negation normal form:

\begin{equation*}
    (\lnot p \lor q)\ \land\ (p \lor r)\ \land\ (\lnot p \lor \lnot q)\ \land\ (p \lor \lnot r)
\end{equation*}

Set of clauses:

\begin{equation*}
    \{\lnot p, q\},\ \{p, r\}, \{\lnot p, \lnot q\},\ \{p, \lnot r\}
\end{equation*}

Apply systematically resolution

  • for each propositional variable
  • for each pair of clauses

Right to Left

Initial formula:

\begin{equation*}
    ((p \land q)\ \lor\ ((\lnot p) \land r)) \rightarrow  ((p \rightarrow q) \land\ ((\lnot p) \rightarrow r)) 
\end{equation*}