LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:propositional_logic_syntax [2008/03/18 14:00]
vkuncak
sav08:propositional_logic_syntax [2015/04/21 17:30] (current)
Line 3: Line 3:
 Let $V$ be a [[countable set]] of //​propositional variables//,​ denoted by non-terminal //​V//​. ​ The context-free grammar of propositional logic formulas ${\cal F}$ is the following: Let $V$ be a [[countable set]] of //​propositional variables//,​ denoted by non-terminal //​V//​. ​ The context-free grammar of propositional logic formulas ${\cal F}$ is the following:
  
-\[+\begin{equation*}
    F ::= V \mid {\it false} \mid {\it true} \mid (F \land F) \mid (F \lor F) \mid (\lnot F) \mid (F \rightarrow F) \mid (F \leftrightarrow F)    F ::= V \mid {\it false} \mid {\it true} \mid (F \land F) \mid (F \lor F) \mid (\lnot F) \mid (F \rightarrow F) \mid (F \leftrightarrow F)
-\]+\end{equation*}
 We denote the set of all propositional formulas given by the above [[:Notes on Context-Free Grammars|context-free grammar]] by ${\cal F}$.  Each propositional formula is a finite sequence of symbols, given by the above context-free grammar. ​ The set ${\cal F}$ is a countable set: we can order all formulas in this set in a sequence (for example, by writing them down in binary alphabet and sorting the resulting strings alphabetically). We denote the set of all propositional formulas given by the above [[:Notes on Context-Free Grammars|context-free grammar]] by ${\cal F}$.  Each propositional formula is a finite sequence of symbols, given by the above context-free grammar. ​ The set ${\cal F}$ is a countable set: we can order all formulas in this set in a sequence (for example, by writing them down in binary alphabet and sorting the resulting strings alphabetically).
  
-Omitting ​parantheses:+Omitting ​parentheses:
   * $\land$, $\lor$ associative   * $\land$, $\lor$ associative
   * priorities, from strongest-binding:​ $(\lnot)\ ;\ (\land, \lor)\ ;\ (\rightarrow,​ \leftrightarrow)$   * priorities, from strongest-binding:​ $(\lnot)\ ;\ (\land, \lor)\ ;\ (\rightarrow,​ \leftrightarrow)$
-When in doubt, use parenthesis.+When in doubt, use parentheses.
  
 Notation: when we write $F_1 \equiv F_2$ this means that $F_1$ and $F_2$ are identical formulas (with identical syntax trees). ​ For example, $p \land q \equiv p \land q$, but it is not the case that $p \land q \equiv q \land p$. Notation: when we write $F_1 \equiv F_2$ this means that $F_1$ and $F_2$ are identical formulas (with identical syntax trees). ​ For example, $p \land q \equiv p \land q$, but it is not the case that $p \land q \equiv q \land p$.
  
 In [[Isabelle theorem prover]] we use this ++++ASCII notation for Propositional Logic| In [[Isabelle theorem prover]] we use this ++++ASCII notation for Propositional Logic|
-\[+\begin{equation*}
 \begin{array}{c|c} ​ \begin{array}{c|c} ​
 \mbox{math} & \mbox{Isabelle} \\ \hline \mbox{math} & \mbox{Isabelle} \\ \hline
Line 27: Line 27:
 {\it false} & \verb!False! \\ {\it false} & \verb!False! \\
 \end{array} \end{array}
-\]+\end{equation*}
 Rendering and input in math notation is also possible using ProofGeneral or Eclipse. Rendering and input in math notation is also possible using ProofGeneral or Eclipse.
  
Line 36: Line 36:
  
 $FV$ denotes the set of free variables in the given propositional formula and can be defined recursively as follows: $FV$ denotes the set of free variables in the given propositional formula and can be defined recursively as follows:
-\[\begin{array}{l}+\begin{equation*}\begin{array}{l}
   FV(p) = \{ p \}, \mbox{ for } p \in V \\   FV(p) = \{ p \}, \mbox{ for } p \in V \\
   FV(\lnot F) = FV(F) \\   FV(\lnot F) = FV(F) \\
Line 43: Line 43:
   FV(F_1 \rightarrow F_2) = FV(F_1) \cup FV(F_2) \\   FV(F_1 \rightarrow F_2) = FV(F_1) \cup FV(F_2) \\
   FV(F_1 \leftrightarrow F_2) = FV(F_1) \cup FV(F_2) \\   FV(F_1 \leftrightarrow F_2) = FV(F_1) \cup FV(F_2) \\
-\end{array}\]+\end{array}\end{equation*}
  
 If $FV(F) = \emptyset$, we call $F$ a //ground formula//. If $FV(F) = \emptyset$, we call $F$ a //ground formula//.