LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:first-order_logic_syntax [2008/03/18 12:12]
vkuncak
sav08:first-order_logic_syntax [2008/03/18 12:17]
vkuncak
Line 69: Line 69:
  
 $FV$ denotes the set of free variables in the given propositional formula and can be defined recursively as follows: $FV$ denotes the set of free variables in the given propositional formula and can be defined recursively as follows:
-\[\begin{array}{l+\[\begin{array}{rcl
-  FV(x) = \{ x \}, \mbox{ for } x \in V \\ +  FV(x) &=\{ x \}, \mbox{ for } x \in V \\ 
-  FV(\lnot F) = FV(F) \\ +  FV(f(t_1,​\ldots,​t_n) &=& F(t_1) \cup \ldots \cup F(t_n) \\ 
-  FV(F_1 \land F_2) = FV(F_1) \cup FV(F_2) \\ +  FV(R(t_1,​\ldots,​t_n) &=& F(t_1) \cup \ldots \cup F(t_n) \\ 
-  FV(F_1 \lor F_2) = FV(F_1) \cup FV(F_2) \\ +  FV(t_1 = t_2) &=& F(t_1) \cup F(t_2) ​\\ 
-  FV(F_1 \rightarrow F_2) = FV(F_1) \cup FV(F_2) \\ +  FV(\lnot F) &=FV(F) \\ 
-  FV(F_1 \leftrightarrow F_2) = FV(F_1) \cup FV(F_2) \\ +  FV(F_1 \land F_2) &=FV(F_1) \cup FV(F_2) \\ 
-  FV(\forall x.F) = FV(F) \setminus \{x\} \\ +  FV(F_1 \lor F_2) &=FV(F_1) \cup FV(F_2) \\ 
-  FV(\exists x.F) = FV(F) \setminus \{x\} +  FV(F_1 \rightarrow F_2) &=FV(F_1) \cup FV(F_2) \\ 
 +  FV(F_1 \leftrightarrow F_2) &=FV(F_1) \cup FV(F_2) \\ 
 +  FV(\forall x.F) &=FV(F) \setminus \{x\} \\ 
 +  FV(\exists x.F) &=FV(F) \setminus \{x\} 
 \end{array}\] \end{array}\]
  
 If $FV(F) = \emptyset$, we call $F$ a //closed formula//. If $FV(F) = \emptyset$, we call $F$ a //closed formula//.