LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:axioms_for_equality [2008/04/02 21:28]
vkuncak moved terminological note to semantics of FOL
sav08:axioms_for_equality [2015/04/21 17:30] (current)
Line 1: Line 1:
 ====== Axioms for Equality ====== ====== Axioms for Equality ======
 +
 +//The following definitions are useful when axiomatizing equality in a logic that does not have equality built in. It is also useful when discussing algorithms that automate reasoning about equality.//
  
 For language ${\cal L}$ and a relation symbol $eq \notin {\cal L}$, the theory of equality, denoted AxEq, is the following set of formulas: For language ${\cal L}$ and a relation symbol $eq \notin {\cal L}$, the theory of equality, denoted AxEq, is the following set of formulas:
Line 6: Line 8:
   * Transitivity:​ ++| $\forall x. \forall y. \forall z.\ eq(x,y) \land eq(y,z) \rightarrow eq(x,z)$ ++   * Transitivity:​ ++| $\forall x. \forall y. \forall z.\ eq(x,y) \land eq(y,z) \rightarrow eq(x,z)$ ++
   * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ |   * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ |
-\[+\begin{equation*}
    ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow eq(f(x_1,​\ldots,​x_n),​f(y_1,​\ldots,​y_n))    ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow eq(f(x_1,​\ldots,​x_n),​f(y_1,​\ldots,​y_n))
-\]+\end{equation*}
 ++ ++
   * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ |   * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ |
-\[+\begin{equation*}
    ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n))    ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n))
-\]+\end{equation*}
 ++ ++
  
 **Definition:​** if an interpretation $I = (D,\alpha)$ the axioms $AxEq$ are true, then we call $\alpha(eq)$ (the interpretation of eq) a //​congruence//​ relation for interpretation $I$. **Definition:​** if an interpretation $I = (D,\alpha)$ the axioms $AxEq$ are true, then we call $\alpha(eq)$ (the interpretation of eq) a //​congruence//​ relation for interpretation $I$.
  
-=== Examplequotient on pairs of natural numbers === +**Side remark:** Functions are relations. ​ Howeverthe condition above for function symbols is weaker than the condition for relation symbols.  ​If $fis a functionthen the relation $\{(x_1,\ldots,x_n,f(x_1,\ldots,x_n)) \mid x_1,\ldots,x_n \in D \}$ does not satisfy the congruence condition because it only has one resultnamely ​$f(x_1,\ldots,x_n)$, and not all the results ​that are in relation eq with $f(x_1,\ldots,x_n)$. Howeverif we start from the condition for functions and treat relations as functions that return true or false, we obtain ​the condition for relationsSo, it makes sense here to treat relations as special case of functions.
- +
-Let ${\cal N} = \{0,1,2,\ldots, \}$.  ​Consider a structure with domain ​$N^2$, with functions +
-\+
-    p((x_1,y_1),​(x_2,​y_2)) = (x_1 + x_2, y_1 + y_2) +
-\+
-\[ +
-    m((x_1,y_1),(x_2,y_2)) = (x_1 + y_2y_1 + x_2) +
-\+
-Relation $r$ defined by +
-\[ +
-   r = \{((x_1,y_1),​(x_2,​y_2)) \mid x_1 + y_2 = x_2 + y_1  \} +
-\] +
-is a congruence with respect to operations $p$ and $m$.   +
- +
-Congruence is an equivalence relation. ​ What are equivalence classes for elements: +
- +
-$[(1,1)] = $ ++| $\{ (x,y) \mid x=y \}$++ +
- +
-$[(10,1)] = ++| $\{ (x,y) \mid x=y+9 \}$++ +
- +
-$[(1,10)] = ++| $\{ (x,y) \mid x+9=y \}$++ +
- +
-Whenever we have a congruence in an interpretation,​ we can shrink ​the structure to a smaller one by merging elements ​that are in congruence. ​  +
- +
-In the resulting structure ​$([N^2], I_Q)$ we define operations $p$ and $m$ such that the following holds: +
-\[ +
-\begin{array}{l} +
-   ​I_Q(p)( [(x_1,y_1)] , [(x_2,y_2)] ) = [(x_1 + x_2, y_1 + y_2)] \+
-   ​I_Q(m)( [(x_1,y_1)[(x_2,y_2)] ) = [(x_1 + y_2, y_1 + x_2)]  +
-\end{array} +
-\] +
-This construction is an algebraic approach to construct ​from natural numbers one well-known structure. ​ Which one? ++| $({\cal Z}+ , -)$ where ${\cal Z}$ is the set of integers. ++ +
- +
-Note: this construction can be applied whenever ​we have an associative and commutative operation $*$ satisfying ​the cancelation law $x * z = y * z \rightarrow x=y$ It allows us to contruct ​structure where operation $*$ has an inverse What do we obtain if we apply this construction to multiplication of strictly positive integers?+
  
 ===== References ===== ===== References =====
   * [[Calculus of Computation Textbook]], Section 3.1   * [[Calculus of Computation Textbook]], Section 3.1