Labs 02: Parser in Stainless
In this week's lab, we have a look at parser combinators and tokenizers written in Stainless. Like for the previous lab, you need the material from Week 1 to do this lab, so we suggest you review these videos and tutorials as needed.
Exercise 1: Monad Laws
Following the model of leftIdentity, add the monad laws rightIdentity and associativity. Make sure that Stainless accepts them.
Exercise 2: Tokenizer
We now consider a tokenizer/lexer used to transform a list of characters into a list of tokens, and that could be used to feed the parser. Exercise 2 can be done independently of Exercise 1. The goal is to prove that, given a sequence of tokens (satisfying a condition given as precondition of retokenizeTokens), transforming the tokens to characters (separated by spaces), and then using tokenize on these characters, gives back the original list of tokens.
- Run stainless –timeout=5 Tokenizer.scala and note that Stainless times out on four verification conditions. Three of those correspond to calls to tokenize, because tokenize has a precondition, and Stainless is not able to prove that the precondition of tokenize holds at these three call sites. The other verification condition that times out (let's call it VC4) corresponds Stainless not being able to show that the term line 110 is equal to the one line 113.
- Add an assertion on line 101 for the condition that must hold for the precondition corresponding to the first call to tokenize to be respected.
- Rerun stainless –timeout=5 Tokenizer.scala and note that Stainless times out on the assertion and on VC4. Thanks to the added assertion, Stainless can now prove that the precondition of tokenize is respected for all three call sites.
- You must now make sure that Stainless accepts this assertion. So you have to write and prove new (one or more) lemmas (outside the function), and invoke these lemmas before the assertion to “convince” Stainless that the assertion holds.
- Complete the equational reasoning between line 110 and line 113. Here as well you might need to write, prove, and invoke new lemmas. The first step of the equational reasoning, between line 108 and line 101, is clear for Stainless by unrolling the definition of flatMap, so you do not need to change this first part.
Upload your solutions on Moodle by Friday, 2 October at 23:59.
import stainless.collection._ import stainless.lang._ import stainless.annotation._ import stainless.equations._ import stainless.proof.check object Tokenizer { // @extern // WARNING: @extern is unsound, only use for debugging // def assume(b: Boolean): Unit = { // (??? : Unit) // }.ensuring(_ => b) /************************************************************************************************/ /* Part 1: Parser */ /************************************************************************************************/ case class Parser[A](parse: List[Token] => Option[(A, List[Token])]) { def flatMap[B](f: A => Parser[B]): Parser[B] = Parser(ts => parse(ts).flatMap { case (x, rs) => f(x).parse(rs) }) } def pure[A](x: A): Parser[A] = Parser((ts: List[Token]) => Some((x, ts))) def leftIdentity[A, B](a: A, f: A => Parser[B], ts: List[Token]): Unit = { () }.ensuring(_ => pure(a).flatMap(f).parse(ts) == f(a).parse(ts) ) // Following the model of `leftIdentity`, add here the monad laws `rightIdentity` and // `associativity` and make sure that Stainless accepts them. /************************************************************************************************/ /* Part 2: Tokenizer */ /************************************************************************************************/ sealed abstract class Token { def chars: List[Char] } case class Identifier(cs: List[Char]) extends Token { override def chars = cs } case object Open extends Token { override def chars = List('(') } case object Close extends Token { override def chars = List(')') } def isLowerCase(c: Char): Boolean = 'a' <= c && c <= 'z' def parsableCharacter(c: Char): Boolean = c == ' ' || c == '(' || c == ')' || isLowerCase(c) def parsableToken(t: Token): Boolean = t match { case Identifier(cs) => cs.forall(isLowerCase) && !cs.isEmpty case _ => true } @opaque def dropWhileForall[T](@induct l: List[T], p1: T => Boolean, p2: T => Boolean): Unit = { require(l.forall(p1)) () }.ensuring(_ => l.dropWhile(p2).forall(p1)) def tokenize(cs: List[Char]): List[Token] = { require(cs.forall(parsableCharacter)) decreases(cs.length) cs match { case Nil() => Nil() case Cons(c, cs) if c == ' ' => tokenize(cs) case Cons(c, cs) if c == '(' => Open :: tokenize(cs) case Cons(c, cs) if c == ')' => Close :: tokenize(cs) case Cons(c, cs2) if isLowerCase(c) => val id = cs.takeWhile(isLowerCase) val rest = cs.dropWhile(isLowerCase) dropWhileForall(cs, parsableCharacter, isLowerCase) Identifier(id) :: tokenize(rest) } } // Write and prove the new lemmas you need for questions (4) and (5) here @opaque def retokenizeTokens(ts: List[Token]): Unit = { require(ts.forall(parsableToken)) decreases(ts) // 4) Add (one or more) calls to lemmas (that will have to state and prove above) // to make sure that the assertion (2) is accepted by Stainless // 2) Add an assertion here corresponding to the precondition for the first call to tokenize below ts match { case Nil() => () case Cons(t, ts2) => ( tokenize(ts.flatMap(t => t.chars ++ List(' '))) ==:| trivial |: // by definiton of flatMap tokenize((t.chars ++ List(' ')) ++ ts2.flatMap(t => t.chars ++ List(' '))) ==:| trivial |: // 5) Complete the equational reasoning here ts ).qed } }.ensuring(_ => tokenize(ts.flatMap(t => t.chars ++ List(' '))) == ts) @extern def main(args: Array[String]) = { def scalaListToStainlessList[T](l: scala.collection.immutable.List[T]): List[T] = l match { case scala.collection.immutable.Nil => Nil() case scala.collection.immutable.::(x, xs) => Cons(x, scalaListToStainlessList(xs)) } def stainlessListToScalaList[T](l: List[T]): scala.collection.immutable.List[T] = l match { case Nil() => scala.collection.immutable.Nil case Cons(x, xs) => scala.collection.immutable.::(x, stainlessListToScalaList(xs)) } val tokens = stainlessListToScalaList(tokenize(scalaListToStainlessList(args(0).toList))) println("tokens: " + tokens.mkString(" ")) } }