• English only

# Differences

This shows you the differences between two versions of the page.

 sav08:satisfiability_of_sets_of_formulas [2008/03/11 18:21]vkuncak sav08:satisfiability_of_sets_of_formulas [2008/03/18 00:45] (current)tatjana Both sides previous revision Previous revision 2008/03/18 00:45 tatjana 2008/03/11 18:21 vkuncak 2008/03/11 18:21 vkuncak 2008/03/10 18:10 vkuncak created 2008/03/18 00:45 tatjana 2008/03/11 18:21 vkuncak 2008/03/11 18:21 vkuncak 2008/03/10 18:10 vkuncak created Line 3: Line 3: We next introduce sets of formulas as a way of talking about potentially infinite conjunctions of formulas. ​ We will need this when reducing reasoning in first-order logic to reasoning in propositional logic. We next introduce sets of formulas as a way of talking about potentially infinite conjunctions of formulas. ​ We will need this when reducing reasoning in first-order logic to reasoning in propositional logic. - We say that interpretation $I$ is a model for a set of formulas $S$, written $I \models S$, iff for each $F \in S$, $I \models F$.  In other words, we view a set of formulas as a (potentially infinite) conjunction;​ when $S$ is finite then $I \models S$ is the same condition as $I \models \bigwedge_{F \in S} F$. + We say that interpretation $I$ is a model for a set of formulas $S$, written $I \models S$, iff for each $F \in S$, $I \models F$.  In other words, we view a set of formulas as a (potentially infinite) conjunction;​ when $S$ is finite then $I \models S$ is the same condition as $I \models \bigwedge_{F \in S} F$. - Example: the set $\{p_1, \lnot p_1 \lor p_2, \lnot p_2 \lor p_3, \lnot p_3 \lor p_4, \ldots \}$ is an infinite satisfiable set. + Example: the set $\{p_1, \lnot p_1 \lor p_2, \lnot p_2 \lor p_3, \lnot p_3 \lor p_4, \ldots \}$ is an infinite satisfiable set. The example of one satisfying interpretation is the interpretation which evaluates all variables to $true$. Clearly, if $I \models B$ and $A \subseteq B$, then also $I \models A$. Clearly, if $I \models B$ and $A \subseteq B$, then also $I \models A$. - We say that a set of formulas $S$ is satisfiable iff there exists an interpretation $I$ such that $I \models ​F$. + We say that a set of formulas $S$ is satisfiable iff there exists an interpretation $I$ such that $I \models ​S$.

sav08/satisfiability_of_sets_of_formulas.txt · Last modified: 2008/03/18 00:45 by tatjana

© EPFL 2018 - Legal notice 