LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:simple_qe_for_dense_linear_orders [2008/04/22 16:33]
piskac
sav08:simple_qe_for_dense_linear_orders [2009/04/22 00:02]
vkuncak
Line 1: Line 1:
 ====== Simple QE for Dense Linear Orders ====== ====== Simple QE for Dense Linear Orders ======
  
-Example of dense linear order: rational numbers with less-than relation.  ​Also, real numbers with less-than relation.+Example of dense linear order: rational numbers with less-than relation.  ​(It works in the same way for real numbers with less-than relation.)
  
 ===== Theory of Dense Linear Orders ===== ===== Theory of Dense Linear Orders =====
  
-Language ${\cal L} = \{ < \}$.+Language ${\cal L} = \{ < \}$.  Atomic formulas are of two forms: 
 +  * $x=y$ 
 +  * $x < y$ 
 +Literals are either atomic formulas or their negations.
  
-Formulas are formulas true in structure $(\mathbb{Q},<​)$ ​for all values of free variables.+Formulas ​$T$ are the formulas ​that are closed formulas that are true in the structure $(\mathbb{Q},<​)$ ​or rational numbers. 
 + 
 +**Example:​** The '​successor'​ formula: 
 +\[ 
 +   ​\forall x. \exists y.\ x < y \ \land\ (\forall z. (x < z \rightarrow z=y \lor y < z) 
 +\] 
 +Is this formula true in dense linear orders? Is there a non-dense linear order where its truth value is different?
  
 ===== Normal form of Formulas ===== ===== Normal form of Formulas =====
 +
 +We have seen that it suffices to eliminate quantifiers from conjunctions of literals. ​
 +
 +Can we assume that literals are of a special form?
 +
 +**Example:​** simplify these formulas:
 +  * $x < y\ \land\ \lnot (y < z) \ \land\ (x \neq z)$
 +  * $x < y\ \land y < x$
 +
 +If we have three concrete values for $x,y,z$, what is the form of the strongest type of a formula that we could write about them in this language? //(atomic type formula)//
 +
 +Theorem: every quantifier-free formula in a language with only relational symbols is a disjunction of atomic type formulas
 +  * if we know the set $T$ of axioms, we may be able to show that the atomic type formulas have a simple form
  
 ===== Quantifier Elimination Step ===== ===== Quantifier Elimination Step =====
  
 +Quantifier elimination from atomic type formulas:
 +
 +Quantifier elimination from more general formulas:
 +
 +**Example:​** Use quantifier elimination to compute the truth value in dense linear orders for the example '​successor'​ formula above.
 +
 +===== References =====
  
   * [[http://​www4.informatik.tu-muenchen.de/​~nipkow/​pubs/​lqe.pdf|Linear Quantifier Elimination]]   * [[http://​www4.informatik.tu-muenchen.de/​~nipkow/​pubs/​lqe.pdf|Linear Quantifier Elimination]]