LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:herbrand_universe_for_equality [2008/04/02 14:08]
vkuncak
sav08:herbrand_universe_for_equality [2008/04/02 20:40]
vkuncak
Line 11: Line 11:
 call the resulting formula $F'$. call the resulting formula $F'$.
  
-Consider Herbrand model $I_H$ for $\{F'​\} \cup AxEq$. ​ The relation $e_F(I_H)(eq)$ splits $GT$ into two sets: the set of terms eq with $a$, and the set of terms eq with $b$.+Consider Herbrand model $(GT,I_H)$ for the set $\{F'​\} \cup AxEq$. ​ The relation $I_H(eq)$ splits $GT$ into two sets: the set of terms eq with $a$, and the set of terms eq with $b$.
  
 ===== Constructing Model for Formulas with Equality ===== ===== Constructing Model for Formulas with Equality =====
Line 19: Line 19:
 For each element $t \in GT$, define For each element $t \in GT$, define
 \[ \[
-    [t] = \{ s \mid (s,t) \in e_F(I_H)(eq) \}+    [t] = \{ s \mid (s,t) \in I_H(eq) \}
 \] \]
 Let Let
Line 25: Line 25:
     [GT] = \{ [t] \mid t \in GT \}     [GT] = \{ [t] \mid t \in GT \}
 \] \]
-The constructed model will be $([GT],​I_Q)$ where $I_Q$ is such that+The constructed model will be $([GT],​I_Q)$ where 
 \[ \[
-    I_Q(f)([t_1],​\ldots,​[t_n]) = [f(t_1,​\ldots,​t_n)]+    I_Q(f) ​= \{ ([t_1],​\ldots,​[t_n][f(t_1,​\ldots,​t_n)]) \mid t_1,​\ldots,​t_n \in GT \}
 \] \]
 \[ \[
     I_Q(R) = \{ ([t_1],​\ldots,​[t_n]) \mid (t_1,​\ldots,​t_n) \in I_H(R) \}     I_Q(R) = \{ ([t_1],​\ldots,​[t_n]) \mid (t_1,​\ldots,​t_n) \in I_H(R) \}
 \] \]
-The interpretation of eq in $([GT],​I_Q)$ ​becomes ​equality.+ 
 +In particular, when $R$ is $eq$ we have 
 + 
 +$I_Q(eq) = $ ++| \{ ([t_1],​[t_2]) \mid (t_1,t_2) \in I_H(eq) \} = \{ (a,a) \mid a \in [GT] \}$ 
 + 
 +that is, the interpretation of eq in $([GT],​I_Q)$ ​is equality. 
 +++ 
  
 ===== Herbrand-Like Theorem for Equality ===== ===== Herbrand-Like Theorem for Equality =====