LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:herbrand_s_expansion_theorem [2008/03/24 11:32]
vkuncak
sav08:herbrand_s_expansion_theorem [2009/05/26 10:26]
vkuncak
Line 23: Line 23:
 ===== Constructing a Propositional Model ===== ===== Constructing a Propositional Model =====
  
-We can view the set $expand(S)$ as a set of propositional variables ​with "long names"​.  ​+We can view the set $expand(S)$ as a set of propositional formulas whose propositional variables ​have "long names"​.  ​
  
 For an expansion of clause $C_G$ we can construct the corresponding propositional formula $p(C_G)$. For an expansion of clause $C_G$ we can construct the corresponding propositional formula $p(C_G)$.
  
 **Example** **Example**
 +Let's consider the expanded formula $F=P(f(a)) \wedge R(a, f(a))$, then $p(F)=p_1 \wedge p_4$ 
  
-Define propositional model $I_P : V \to \{{\it true},{\it false\}\}$ by +Define propositional model $I_P : V \to \{\it true},{\it false\}$ by 
 \[ \[
     I_P(p(C_G)) = e_F(C_G)(I)     I_P(p(C_G)) = e_F(C_G)(I)
Line 65: Line 66:
   * set $propExpand(S)$ has a propositional model   * set $propExpand(S)$ has a propositional model
   * set $S$ has a model with domain $GT$   * set $S$ has a model with domain $GT$
 +
 +**Example:​** Take the first three clauses our example (from [[Normal Forms for First-Order Logic]]):
 +  * $R(x,g(x))$
 +  * $\neg R(x,y) \lor R(x,​f(y,​z)))$
 +  * $P(x) \lor P(f(x,a))$
 +Taking as domain $D$ the set of natural numbers, the structure $(D,​\alpha)$ is a model of the conjunction of these three clauses, where $\alpha$ is given by:
 +  * $\alpha(a) = 1$
 +  * $\alpha(c) = 2$
 +  * $\alpha(g)(x) = (x + 1)$
 +  * $\alpha(f)(y,​z) = y+z$
 +  * $\alpha(R) = \{(x,y).\ x < y\}$
 +  * $\alpha(P) = \{x.\ x \mbox{ is even} \}$
 +This model induces an Herbrand model $(GT,​\alpha_H)$,​ in which $\alpha_H(P)$ is a set of ground terms and $\alpha_H(R)$ is a relation on ground terms, $\alpha_H(R) \subseteq GT^2$. ​
 +
 +To determine, for example, whether $(f(a,​a),​g(g(a))) \in \alpha_H(R)$ we check the truth value of the formula
 +\[
 +   ​R(f(a,​a),​g(c)))
 +\]
 +in the original interpretation $(D,​\alpha)$. In this case, the formula reduces to $1+1 < 2+1$ and is true in the interpretation. Therefore, we define $\alpha_H(R)$ to contain the pair of ground terms $(f(a,​a),​g(c)))$.