LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:ground_terms [2008/03/20 12:15]
vkuncak
sav08:ground_terms [2013/05/10 09:53]
vkuncak
Line 9: Line 9:
 i.e. built from constants using function symbols. i.e. built from constants using function symbols.
  
-**Example**+**Example**\\ 
 +${\cal L}=\{a, f\}$ \\ 
 +$GT=\{a, f(a), f(f(a)), f(f(f(a))), ...\}$
  
 If ${\cal L}$ has no constants then $GT$ is empty. ​ In that case, we add a fresh constant $a_0$ into the language and consider ${\cal L} \cup \{a_0\}$ that has a non-empty $GT$.  We call the set $GT$ Herbrand Universe. If ${\cal L}$ has no constants then $GT$ is empty. ​ In that case, we add a fresh constant $a_0$ into the language and consider ${\cal L} \cup \{a_0\}$ that has a non-empty $GT$.  We call the set $GT$ Herbrand Universe.
Line 21: Line 23:
 Let $ar(f)=n$. ​ Then $f : GT^n \to GT$ Let $ar(f)=n$. ​ Then $f : GT^n \to GT$
  
-$\alpha_H(f)(t_1,​\ldots,​t_n) =$ ++| $f(t_1,​\ldots,​t_n)$+++$\alpha_H(f)(t_1,​\ldots,​t_n) = f(t_1,​\ldots,​t_n)$
  
-This defines $\alpha_H(f)$. ​ How to define $\alpha_H(R)$ to ensure that elements of a set are true, i.e. that $e_S(S)(I_H) = {\it true}$? +This defines $\alpha_H(f)$. ​ How to define $\alpha_H(R)$ to ensure that elements of a set are true, i.e. that $e_S(S)(I_H) = {\it true}$?\\ 
-  * is this possible for arbitrary set?+Partition $GT^n$ in two sets, one over which $\alpha_H(R)(t_1,​...,​t_n)$ is true and the other over which it is false. 
 +  * is this possible for arbitrary set? no 
  
 **Example** **Example**
 +Consider a set that is not satisfiable : $\{P(a),\ \neg P(a)\}$
  
 ===== Ground Atoms ===== ===== Ground Atoms =====
Line 41: Line 45:
 We will write $p(A)$. We will write $p(A)$.
  
-**Example** +**Example**\\ 
 +${\cal L}=\{a, f_1, P_1, R_2\}$ \\ 
 +$GT=\{a, f(a), f(f(a)), f(f(f(a))), ...\}$\\ 
 +$HA=\{P(a), R(a,a), P(f(a)), R(a, f(a)), ...\}$\\ 
 +$V=\{p_1, p_2, p_3, p_4, ...\}$\\ 
 +We define p such that :\\ 
 +$p(P(a))=p_1,​\ p(R(a,​a))=p_2,​\ p(P(f(a)))=p_3,​\ p(R(a, f(a)))=p_4,​...$