LARA

This is an old revision of the document!


Axioms for Equality

For language ${\cal L}$ and a relation symbol $eq \notin {\cal L}$, the theory of equality, denoted AxEq, is the following set of formulas:

  • Reflexivity:
  • Symmetry:
  • Transitivity:
  • Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$,
  • Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$,

Definition: if an interpretation $I = (D,\alpha)$ the axioms $AxEq$ are true, then we call $\alpha(eq)$ (the interpretation of eq) a congruence relation for interpretation $I$.

Side remark: Functions are relations. However, the condition above for function symbols is weaker than the condition for relation symbols. If $f$ is a function, then the relation $\{(x_1,\ldots,x_n,f(x_1,\ldots,x_n)) \mid x_1,\ldots,x_n \in D \}$ does not satisfy the congruence condition because it only has one result, namely $f(x_1,\ldots,x_n)$, and not all the results that are in relation eq with $f(x_1,\ldots,x_n)$.

References