LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:axioms_for_equality [2008/04/02 21:28]
vkuncak moved terminological note to semantics of FOL
sav08:axioms_for_equality [2015/04/21 17:30]
Line 1: Line 1:
-====== Axioms for Equality ====== 
- 
-For language ${\cal L}$ and a relation symbol $eq \notin {\cal L}$, the theory of equality, denoted AxEq, is the following set of formulas: 
-  * Reflexivity:​ ++| $\forall x. eq(x,x)$ ++ 
-  * Symmetry: ++| $\forall x. \forall y.\ eq(x,y) \rightarrow eq(y,x)$ ++ 
-  * Transitivity:​ ++| $\forall x. \forall y. \forall z.\ eq(x,y) \land eq(y,z) \rightarrow eq(x,z)$ ++ 
-  * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ | 
-\[ 
-   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow eq(f(x_1,​\ldots,​x_n),​f(y_1,​\ldots,​y_n)) 
-\] 
-++ 
-  * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ | 
-\[ 
-   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n eq(x_i,​y_i)) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n)) 
-\] 
-++ 
- 
-**Definition:​** if an interpretation $I = (D,\alpha)$ the axioms $AxEq$ are true, then we call $\alpha(eq)$ (the interpretation of eq) a //​congruence//​ relation for interpretation $I$. 
- 
-=== Example: quotient on pairs of natural numbers === 
- 
-Let ${\cal N} = \{0,​1,​2,​\ldots,​ \}$.  Consider a structure with domain $N^2$, with functions 
-\[ 
-    p((x_1,​y_1),​(x_2,​y_2)) = (x_1 + x_2, y_1 + y_2) 
-\] 
-\[ 
-    m((x_1,​y_1),​(x_2,​y_2)) = (x_1 + y_2, y_1 + x_2) 
-\] 
-Relation $r$ defined by 
-\[ 
-   r = \{((x_1,​y_1),​(x_2,​y_2)) \mid x_1 + y_2 = x_2 + y_1  \} 
-\] 
-is a congruence with respect to operations $p$ and $m$.  ​ 
- 
-Congruence is an equivalence relation. ​ What are equivalence classes for elements: 
- 
-$[(1,1)] = $ ++| $\{ (x,y) \mid x=y \}$++ 
- 
-$[(10,1)] = $ ++| $\{ (x,y) \mid x=y+9 \}$++ 
- 
-$[(1,10)] = $ ++| $\{ (x,y) \mid x+9=y \}$++ 
- 
-Whenever we have a congruence in an interpretation,​ we can shrink the structure to a smaller one by merging elements that are in congruence.  ​ 
- 
-In the resulting structure $([N^2], I_Q)$ we define operations $p$ and $m$ such that the following holds: 
-\[ 
-\begin{array}{l} 
-   ​I_Q(p)( [(x_1,y_1)] , [(x_2,y_2)] ) = [(x_1 + x_2, y_1 + y_2)] \\ 
-   ​I_Q(m)( [(x_1,y_1)] , [(x_2,y_2)] ) = [(x_1 + y_2, y_1 + x_2)]  
-\end{array} 
-\] 
-This construction is an algebraic approach to construct from natural numbers one well-known structure. ​ Which one? ++| $({\cal Z}, + , -)$ where ${\cal Z}$ is the set of integers. ++ 
- 
-Note: this construction can be applied whenever we have an associative and commutative operation $*$ satisfying the cancelation law $x * z = y * z \rightarrow x=y$.  It allows us to contruct a structure where operation $*$ has an inverse. ​ What do we obtain if we apply this construction to multiplication of strictly positive integers? 
- 
-===== References ===== 
-  * [[Calculus of Computation Textbook]], Section 3.1