LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:axioms_for_equality [2008/04/02 00:47]
vkuncak
sav08:axioms_for_equality [2008/04/02 21:28]
vkuncak moved terminological note to semantics of FOL
Line 7: Line 7:
   * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ |   * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ |
 \[ \[
-   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n x_i y_i) \rightarrow f(x_1,​\ldots,​x_n) ​f(y_1,​\ldots,​y_n)+   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n ​eq(x_i,y_i)) \rightarrow ​eq(f(x_1,​\ldots,​x_n),f(y_1,​\ldots,​y_n))
 \] \]
 ++ ++
   * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ |   * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ |
 \[ \[
-   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n x_i y_i) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n))+   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n ​eq(x_i,y_i)) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n))
 \] \]
 ++ ++
  
-Note: if an interpretation $(D,I)$ satisfies ​$AxEq$, then we call $e_F(I)(eq)$ (the interpretation of eq) a //​congruence//​ relation for $(D,I)$.+**Definition:** if an interpretation $I = (D,\alpha)$ the axioms ​$AxEq$ ​are true, then we call $\alpha(eq)$ (the interpretation of eq) a //​congruence//​ relation for interpretation ​$I$.
  
 === Example: quotient on pairs of natural numbers === === Example: quotient on pairs of natural numbers ===
Line 51: Line 51:
 \] \]
 This construction is an algebraic approach to construct from natural numbers one well-known structure. ​ Which one? ++| $({\cal Z}, + , -)$ where ${\cal Z}$ is the set of integers. ++ This construction is an algebraic approach to construct from natural numbers one well-known structure. ​ Which one? ++| $({\cal Z}, + , -)$ where ${\cal Z}$ is the set of integers. ++
 +
 +Note: this construction can be applied whenever we have an associative and commutative operation $*$ satisfying the cancelation law $x * z = y * z \rightarrow x=y$.  It allows us to contruct a structure where operation $*$ has an inverse. ​ What do we obtain if we apply this construction to multiplication of strictly positive integers?
  
 ===== References ===== ===== References =====
   * [[Calculus of Computation Textbook]], Section 3.1   * [[Calculus of Computation Textbook]], Section 3.1