LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

regular_expressions_for_automata_with_parallel_inputs [2009/04/28 20:26]
vkuncak
regular_expressions_for_automata_with_parallel_inputs [2015/04/21 17:32]
Line 1: Line 1:
-====== Regular Expressions and Automata with Parallel Inputs ====== 
- 
-Given an alphabet $\Sigma$, we consider a larger (but still finite) alphabet $\Sigma^n$ for some $n$.  Keep in mind that $(a_1,​\ldots,​a_n) \in \Sigma_n$ is just one symbol; we often write it as 
-\[\left( 
-   ​\begin{array}{l} 
-      a_1 \\ 
-      \ldots \\ 
-      a_n 
-   ​\end{array} 
-   ​\right) 
-\] 
- 
-We can consider 
-  * regular expression 
-  * automata 
-on such alphabets. 
- 
-====== Using Propositional Formulas to Denote Finite Sets of Symbols ====== 
- 
-Suppose $\Sigma = \{0,1\}$. 
- 
-Let $n=3$.  ​ 
- 
-$\Sigma^3 = \{ (0,​0,​0),​(0,​0,​1),​\ldots,​(1,​1,​1) \}$. 
- 
-Language representing that the third coordinate is the logical **and** of the first two is: 
-\[ 
-  \left( 
-  \left( 
-   ​\begin{array}{l} 
-    0 \\ 
-    0 \\ 
-    0 \\ 
-   ​\end{array} 
-   ​\right) 
-  + 
-  \left( 
-   ​\begin{array}{l} 
-    0 \\ 
-    1 \\ 
-    0 \\ 
-   ​\end{array} 
-   ​\right) 
-  + 
-  \left( 
-   ​\begin{array}{l} 
-    1 \\ 
-    0 \\ 
-    0 \\ 
-   ​\end{array} 
-   ​\right) 
-  + 
-  \left( 
-   ​\begin{array}{l} 
-    1 \\ 
-    1 \\ 
-    1 \\ 
-   ​\end{array} 
-   ​\right) 
-   ​\right)^* 
-\] 
- 
-Instead of considering $\Sigma^3$, we can consider $\{x,y,z\} \to \Sigma$ where $x,y,z$ are three names of variables. 
- 
-We then use propositional formulas to denote possible values of bits. For example, $[x \land y]$ denotes the regular expression ​ 
-\[ 
-  \left( 
-   ​\begin{array}{l} 
-    1 \\ 
-    1 \\ 
-    0 \\ 
-   ​\end{array} 
-   ​\right) 
-  + 
-  \left( 
-   ​\begin{array}{l} 
-    1 \\ 
-    1 \\ 
-    1 \\ 
-   ​\end{array} 
-   ​\right) 
-\] 
-The bitwise **and** relation, shown above, is given by 
-\[ 
-    [z \leftrightarrow (x \land y)]^* 
-\] 
- 
-In general 
-\begin{equation*} 
-  [p(v_1,​\ldots,​v_n)] =  
-  \left( 
-   ​\begin{array}{l} 
-    a_{11} \\ 
-    \ldots \\ 
-    a_{1n} ​ 
-   ​\end{array} 
-   ​\right) 
-+ \\ 
-\ldots \\ 
-+ \\ 
-  \left( 
-   ​\begin{array}{l} 
-    a_{k1} \\ 
-    \ldots \\ 
-    a_{kn} ​ 
-   ​\end{array} 
-   ​\right) 
-\end{equation*} 
-where $p(v_1,​\ldots,​v_n)$ is a propositional formula and $(a_{i1},​\ldots,​a_{in})$ for $1 \leq i \leq k$ are all tuples of values of propositional variables for which $p(v_1,​\ldots,​v_n)$ is true. 
- 
-Notational advantage: the set of variables can be larger, the expression is still the same.