LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:simple_qe_for_integer_difference_inequalities [2009/04/21 19:17]
vkuncak
sav08:simple_qe_for_integer_difference_inequalities [2009/04/22 00:04]
vkuncak
Line 1: Line 1:
 ====== Simple QE for Integer Difference Inequalities ====== ====== Simple QE for Integer Difference Inequalities ======
 +
  
  
Line 22: Line 23:
  
 ++++|It is formula with one free variable, $y$. ++++|It is formula with one free variable, $y$.
-So it must be built out of atomic formulas $y \leq y$ and $y=y$, and is therefore either true or false.+So it must be built out of atomic formulas $y \leq y$ and $y=y$, and is therefore ​it is either ​always ​true or always ​false, regardless of the value of $y$. It thus cannot be equivalent to the above formula.
 ++++ ++++
 **End.** **End.**
Line 87: Line 88:
 $\forall y \exists x . x \leq y \wedge x \neq y $ $\forall y \exists x . x \leq y \wedge x \neq y $
  
-++|\\+++++|\\
 $\exists x . x \leq y \wedge (x < y \vee y  < x)$\\ $\exists x . x \leq y \wedge (x < y \vee y  < x)$\\
 $\exists x . x \leq y \wedge (x + 1 \leq y \vee y + 1 \leq x)$\\ $\exists x . x \leq y \wedge (x + 1 \leq y \vee y + 1 \leq x)$\\
 $(\exists x . x \leq y \wedge x + 1 \leq y) \vee (\exists x . x \leq y \wedge y + 1 \leq x)$\\ $(\exists x . x \leq y \wedge x + 1 \leq y) \vee (\exists x . x \leq y \wedge y + 1 \leq x)$\\
 +$true \vee false$\\
 +$true$
  
-Because there are no lower or upper bounds, these formulas are $true$\\+++++
  
 If we apply this technique to a closed formula in this theory, what formulas do we obtain as a result? If we apply this technique to a closed formula in this theory, what formulas do we obtain as a result?