LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:using_automata_to_decide_ws1s [2010/05/21 01:45]
vkuncak
sav08:using_automata_to_decide_ws1s [2012/05/15 12:48]
vkuncak
Line 1: Line 1:
 ====== Using Automata to Decide WS1S ====== ====== Using Automata to Decide WS1S ======
  
-Consider a formula $F$ of [[weak_monadic_logic_of_one_successor|WS1S]] ​without quantifiers.  Let $V$ be a finite set of all variables in $F$.  We construct an automaton $A(F)$ in the finite alphabet+Consider a formula $F$ of [[weak_monadic_logic_of_one_successor|WS1S]]. ​ Let $V$ be a finite set of all variables in $F$.  We construct an automaton $A(F)$ in the finite alphabet
 \[ \[
    ​\Sigma = \Sigma_1^V    ​\Sigma = \Sigma_1^V
Line 14: Line 14:
 \] \]
  
-Instead of $e(F)(D,​\alpha(w))={\it true}$ we write for short $w \models F$.+Instead of $e(F)(D,​\alpha(w))={\it true}$ we write for short $w \models F$. So, we design automata so that: 
 +\[ 
 +    w \in L(A(F)) \ \ \ \iff \ \ \ w \models F 
 +\]
  
 The following lemma follows from the definition of semantic evaluation function '​e'​ and the shorthand $w \models F$. The following lemma follows from the definition of semantic evaluation function '​e'​ and the shorthand $w \models F$.
  
 **Lemma**: Let $F,F_i$ denote formulas, $w \in \Sigma^*$. Then **Lemma**: Let $F,F_i$ denote formulas, $w \in \Sigma^*$. Then
-  * $w \models (F_1 \lor F_2)$ iff $w \models F_1$ and $w \models F_2$+  * $w \models (F_1 \lor F_2)$ iff $w \models F_1$ or $w \models F_2$
   * $w \models \lnot F$ iff $\lnot (w \models F)$   * $w \models \lnot F$ iff $\lnot (w \models F)$
   * $w \models \exists x.F$ iff $\exists b. patch(w,​x,​b) \models F$   * $w \models \exists x.F$ iff $\exists b. patch(w,​x,​b) \models F$
Line 98: Line 101:
   * if $q$ is a final state and $zero_x \in \Sigma$ is such that $zero_x(v)=0$ for all $x \neq v$, and if $\delta(q',​zero_x)=q$,​ then set $q'$ also to be final   * if $q$ is a final state and $zero_x \in \Sigma$ is such that $zero_x(v)=0$ for all $x \neq v$, and if $\delta(q',​zero_x)=q$,​ then set $q'$ also to be final
  
-**Example:​** Compute automaton for formula $\exists X. \lnot (X \subseteq Y)$.+**Example ​1:** Compute automaton for formula $\exists X. \lnot (X \subseteq Y)$
 + 
 +**Example 2:** Compute automaton for formula $\exists Y. (X < Y)$ where $<$ is interpreted treating $X,Y$ as digits of natural numbers.
  
 ===== References ===== ===== References =====