LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:simple_qe_for_dense_linear_orders [2008/04/22 16:33]
piskac
sav08:simple_qe_for_dense_linear_orders [2009/04/22 12:08]
vkuncak
Line 1: Line 1:
 ====== Simple QE for Dense Linear Orders ====== ====== Simple QE for Dense Linear Orders ======
  
-Example of dense linear order: rational numbers with less-than relation.  ​Also, real numbers with less-than relation.+Example of dense linear order: rational numbers with less-than relation.  ​(It works in the same way for real numbers with less-than relation.)
  
 ===== Theory of Dense Linear Orders ===== ===== Theory of Dense Linear Orders =====
  
-Language ${\cal L} = \{ < \}$.+Language ${\cal L} = \{ < \}$.  Atomic formulas are of two forms: 
 +  * $x=y$ 
 +  * $x < y$ 
 +Literals are either atomic formulas or their negations.
  
-Formulas are formulas true in structure $(\mathbb{Q},<​)$ ​for all values of free variables.+Formulas ​$T$ are the formulas ​that are closed formulas that are true in the structure $(\mathbb{Q},<​)$ ​or rational numbers. 
 + 
 +**Example:​** The '​successor'​ formula: 
 +\[ 
 +   ​\forall x. \exists y.\ x < y \ \land\ (\forall z. (x < z \rightarrow z=y \lor y < z) 
 +\] 
 +Is this formula true in dense linear orders? Is there a non-dense linear order where its truth value is different?
  
 ===== Normal form of Formulas ===== ===== Normal form of Formulas =====
 +
 +We have seen that it suffices to eliminate quantifiers from conjunctions of literals. ​
 +
 +Can we assume that literals are of a special form?
 +
 +**Example:​** simplify these formulas:
 +  * $x < y\ \land\ \lnot (y < z) \ \land\ (x \neq z)$
 +  * $x < y\ \land y < x$
 +
 +If we have three concrete values for $x,y,z$, what is the form of the strongest type of a formula that we could write about them in this language? //(atomic type formula)//
 +
 +Theorem: every quantifier-free formula in a language with only relational symbols is a disjunction of atomic type formulas
 +  * if we know the set $T$ of axioms, we may be able to show that the atomic type formulas have a simple form
  
 ===== Quantifier Elimination Step ===== ===== Quantifier Elimination Step =====
  
 +Quantifier elimination from atomic type formulas:
 +
 +Quantifier elimination from more general formulas:
 +
 +**Example:​** Use quantifier elimination to compute the truth value in dense linear orders for the example '​successor'​ formula above.
 +
 +
 +===== References =====
  
-  * [[http://​www4.informatik.tu-muenchen.de/​~nipkow/​pubs/​lqe.pdf|Linear Quantifier Elimination]]+  * [[http://​www4.informatik.tu-muenchen.de/​~nipkow/​pubs/​lqe.pdf|Linear Quantifier Elimination]] ​(Tobias Nipkow, IJCAR 2008)
   * [[http://​citeseer.ist.psu.edu/​loos93applying.html|Applying Linear Quantifier Elimination]]   * [[http://​citeseer.ist.psu.edu/​loos93applying.html|Applying Linear Quantifier Elimination]]
   * [[http://​citeseer.ist.psu.edu/​71579.html|Parallel Fourier-Motzkin Elimination]]   * [[http://​citeseer.ist.psu.edu/​71579.html|Parallel Fourier-Motzkin Elimination]]