LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:qbf_and_quantifier_elimination [2008/03/10 11:11]
vkuncak
sav08:qbf_and_quantifier_elimination [2008/03/10 11:17]
vkuncak
Line 1: Line 1:
 ====== QBF and Quantifier Elimination ====== ====== QBF and Quantifier Elimination ======
  
-Quantified Propositional ​Formulas: syntax and semantics.+=== Quantified Propositional ​Formula Syntax ===
  
-Eliminating ​quantifiers ​by expansion:​ +We extend the definition of formulas with quantifiers ​$\forall p.F$ and $\exists p.F$ where $p \in V$: 
-\+\[\begin{array}{rcl} 
-    ​\exists p. F \ \leadsto subst(\{\mapsto ​{\it false}\},F\land subst(\{p \mapsto {\it false}\},F)+   ​F ​ & ::= & V \mid {\it false} \mid {\it true\mid (F \land F) \mid (\lor F) \mid (\lnot F) \mid (F \rightarrow ​F) \mid (F \leftrightarrow F) \\ 
 +      & \mid & \forall V. F\ \mid\ \exists V. F 
 +\end{array}
 \] \]
  
 +=== Eliminating quantifiers by expansion ===
 +
 +We can apply the following rules to eliminate propositional quantifiers:​
 +\[
 +    \exists p. F \ \leadsto subst(\{p \mapsto {\it false}\},F) \lor subst(\{p \mapsto {\it true}\},F)
 +\]
 +\[
 +    \forall p. F \ \leadsto subst(\{p \mapsto {\it false}\},F) \land subst(\{p \mapsto {\it true}\},F)
 +\]
 Note that the expansion can produce exponentially larger formula. Note that the expansion can produce exponentially larger formula.
  
 Notion of quantifier elimination applies to other logic as well. Notion of quantifier elimination applies to other logic as well.
  
-Formula $F$ is valid iff $\forall p_1,\ldots,p_n. F$ is true.+Definition: A logic has //​quantifier elimination//​ if for every formula in the logicthere exists an equivalent formula without quantifiers.
  
-Formula $F$ is satisfiable iff $\exists p_1,​\ldots,​p_n. F$ is true.+Definition: A quantifier elimination algorithm is an algorithm that takes a formula in a logic and converts it into an equivalent formula without quantifiers. 
 + 
 +Note: Formula $F$ is valid iff $\forall p_1,​\ldots,​p_n. F$ is true. 
 + 
 +Note: Formula $F$ is satisfiable iff $\exists p_1,​\ldots,​p_n. F$ is true.
  
 In general QBF formulas can have alternations between $\forall$ and $\exists$ quantifiers:​ In general QBF formulas can have alternations between $\forall$ and $\exists$ quantifiers:​
Line 21: Line 36:
 \] \]
  
-Note:+=== Quantified Propositional Formula Semantics === 
 + 
 +We can similarly provide recursive semantic function definition for propositional logic. 
 + 
 +=== Notes on Computational Complexity === 
   * checking satisfiability of propositional formula $F$ is NP-complete   * checking satisfiability of propositional formula $F$ is NP-complete
   * checking validity of propositional formula $F$ is coNP-complete   * checking validity of propositional formula $F$ is coNP-complete
   * checking truth value of arbitrary QBF formula is PSPACE-complete   * checking truth value of arbitrary QBF formula is PSPACE-complete