LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision Both sides next revision
sav08:playground [2008/03/19 16:02]
vkuncak
sav08:playground [2010/03/30 20:28]
hossein
Line 1: Line 1:
 ====== Playground ====== ====== Playground ======
  
-Therefore $ subst(sigma)( x ) x$+===== Problem 1: Linear Extension =====
  
-sigma rm  {}d{}e{}fined ​ x$+Let $r\subseteq A\times Abe an arbitrary relation and $\leq$ a partial order on $A$.
  
-sigma rm  defined ​ x$+a) Assume ​$a,b\in Ato be incomparable:​ $a\not\leq b$ and $b\not\leq a$. Show that the transitive closure of the relation $r_{\text{ex}}$ is a partial order on $A$.
  
 +$r_{\text{ex}} = \{(x,y) | x\leq y\}\cup\{(a,​b)\}$
 +
 +b) Use (a) to show if $A$ is finite then every order $\leq$ on $A$ has a linear extension.
 +A total order $\leq_{1}$ is a linear extension of a partial order $\leq$ if, whenever $x\leq y$ implies that $x\leq_{1} y$.
 +
 +c) Use (a) to show there is a finite number of total orders $(A,​\leq_1),​\cdots,​(A,​\leq_n)$ such that for all $a,b\in A$ we have
 +
 +$a\leq b \Leftrightarrow (a\leq_1b \wedge\cdots\wedge a\leq_n b)$
 +
 +d) Show that $\leq_1$ is a linear extension of $\leq$ if and only if $(A,​\leq_1)$ is a total order and the identity function is a monotone function from $(A,\leq)$ to $(A,​\leq_1)$.