LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:notes_on_congruences [2008/04/26 16:51]
damien
sav08:notes_on_congruences [2009/05/06 11:56]
vkuncak
Line 5: Line 5:
 We next fix $D$ as well as functions and relations and consider the set of all congruences on the set $D$ with respect to these functions and relations.  ​ We next fix $D$ as well as functions and relations and consider the set of all congruences on the set $D$ with respect to these functions and relations.  ​
  
-We assume no relation symbols other than congruence itself. ​ We can represent predicate $p(x_1,​\ldots,​x_n)$ as $f_p(x_1,​\ldots,​x_n)=trwhere $f_p$ is a fresh function and $tr$ is a fresh special constant (think of this constant as '​true'​).+We assume no relation symbols other than congruence itself.  ​(We represent ​predicate $p(x_1,​\ldots,​x_n)$ as $f_p(x_1,​\ldots,​x_n)=true$.) 
  
 ===== Intersection of Congruences ===== ===== Intersection of Congruences =====
Line 35: Line 36:
 \[\begin{array}{rcl} \[\begin{array}{rcl}
  ​\bigwedge_{i=0}^n (x_i,y_1) \in \bigcap S & \rightarrow & \bigwedge_{i=0}^n (x_i,y_1) \in r_1,r_2 \\  ​\bigwedge_{i=0}^n (x_i,y_1) \in \bigcap S & \rightarrow & \bigwedge_{i=0}^n (x_i,y_1) \in r_1,r_2 \\
- ​r_1,​r_2 ~~ \text{congruence relations} & \rightarrow & f(x_1,​\ldots,​ x_n) f(y_1,​\ldots,​ y_n) \in r_1,r_2 \\+ ​r_1,​r_2 ~~ \text{congruence relations} & \rightarrow & (f(x_1,​\ldots,​ x_n)f(y_1,​\ldots,​ y_n)) \in r_1,r_2 \\
  & \rightarrow & f(x_1,​\ldots,​ x_n) = f(y_1,​\ldots,​ y_n) \in \bigcap S  & \rightarrow & f(x_1,​\ldots,​ x_n) = f(y_1,​\ldots,​ y_n) \in \bigcap S
 \end{array} \] \end{array} \]
Line 65: Line 66:
   * $\bigcup_{n \ge 0} r_n \subseteq r_* $: by induction on $n$.   * $\bigcup_{n \ge 0} r_n \subseteq r_* $: by induction on $n$.
     * $n=0$: $r_0 \subseteq r_*$ by definition of $r_*$     * $n=0$: $r_0 \subseteq r_*$ by definition of $r_*$
-    * $n \rightarrow n+1$: only elements ​that are **needed** ​to make a congruence out of $r_n$ are added to $r_{n+1}$, hence these element are also in $r_*$.+    * $n \rightarrow n+1$: all elements ​introduced by $C(r_n)$ ​are required ​to be in $r_*$ by definition ​of congruence, so if $r_n \subseteq r_*then also $r_{n+1} ​\subseteq ​r_*$
  
 **End of Proof.** **End of Proof.**