LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:non-ground_instantiation_and_resolution [2008/04/01 16:21]
vkuncak
sav08:non-ground_instantiation_and_resolution [2008/04/01 17:05]
vkuncak
Line 42: Line 42:
 \[ \[
 \frac{C \cup \{\lnot A_1\}\ \ \ D \cup \{A_2\}} \frac{C \cup \{\lnot A_1\}\ \ \ D \cup \{A_2\}}
-     ​{subst(\sigma,C \cup D)}+     ​{subst(\sigma_1)(C\cup subst(\sigma_2)(D)}
 \] \]
-such that $subst(\sigma)(A_1) = subst(\sigma)(A_2)$.+such that $subst(\sigma_1)(A_1) = subst(\sigma_2)(A_2)$. 
 + 
 +Resolution with instantiation generalizes resolution and ground resolution. 
 + 
 +One complete proof system contains: 
 +  * instantiation 
 +  * resolution with instantiation 
 + 
 +Note: if we apply instantiation that renames variables in each clause, then $\sigma_1$ and $\sigma_2$ can have disjoint domains and we let $\sigma = \sigma_1 \cup \sigma_2$, obtaining
  
 Note: $\sigma$ such that $subst(\sigma)(A_1) = subst(\sigma)(A_2)$ is called a **unifier** for $\{A_1,​A_2\}$. Note: $\sigma$ such that $subst(\sigma)(A_1) = subst(\sigma)(A_2)$ is called a **unifier** for $\{A_1,​A_2\}$.
 +
 +Further step: do we need to consider all unifiers?
 +
 +Most general unifier. ​ To compute it we can use the standard [[Unification]] algorithm.
 +
 +----
 +
  
 **Factoring with instantiation** **Factoring with instantiation**
 \[ \[
-\frac{C \cup \{\lnot A_1, A_2\}} +\frac{C \cup \{A_1, A_2\}} 
-     ​{subst(\sigma,\cup D)}+     ​{subst(\sigma)(C)}
 \] \]
 where $subst(\sigma)(A_1)=subst(\sigma)(A_2)$. where $subst(\sigma)(A_1)=subst(\sigma)(A_2)$.
  
-Further step: do we need to consider all unifiers? 
- 
-Most general unifier. ​ To compute it we can use the standard [[Unification]] algorithm.