LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:non-ground_instantiation_and_resolution [2008/04/01 16:09]
vkuncak
sav08:non-ground_instantiation_and_resolution [2008/04/01 17:45]
vkuncak
Line 15: Line 15:
 \] \]
 ++++ ++++
- 
-===== Non-Ground Factoring ==== 
- 
-\[ 
-\frac{C \cup \{\lnot A,A\}} 
-     {C} 
-\] 
  
 ===== Non-Ground Instantiation ==== ===== Non-Ground Instantiation ====
Line 46: Line 39:
 If we try to do the proof, how do we know what to instantiate with? ++|we instantiate to enable subsequent resolution rule.++ If we try to do the proof, how do we know what to instantiate with? ++|we instantiate to enable subsequent resolution rule.++
  
-Resolution with instantiation:+**Instantiation followed by resolution:**
 \[ \[
 \frac{C \cup \{\lnot A_1\}\ \ \ D \cup \{A_2\}} \frac{C \cup \{\lnot A_1\}\ \ \ D \cup \{A_2\}}
-     ​{subst(\sigma,C \cup D)}+     ​{subst(\sigma_1)(C\cup subst(\sigma_2)(D)}
 \] \]
-such that $subst(\sigma,A_1) = subst(\sigma,A_2)$.+such that $subst(\sigma_1)(A_1) = subst(\sigma_2)(A_2)$. 
 + 
 +This rule generalizes resolution and ground resolution. 
 + 
 +Note: if we apply instantiation that renames variables in each clause, then $\sigma_1$ and $\sigma_2$ can have disjoint domains and we let $\sigma = \sigma_1 \cup \sigma_2$, obtaining 
 + 
 +One complete proof system contains: 
 +  * instantiation followed by resolution 
 +  * instantiation
  
-Note: $\sigma$ such that $subst(\sigma,A_1) = subst(\sigma,A_2)$ is called a **unifier** for $\{A_1,​A_2\}$.+Note: $\sigma$ such that $subst(\sigma)(A_1) = subst(\sigma)(A_2)$ is called a **unifier** for $\{A_1,​A_2\}$.
  
-Does resolution with instantiation subsume: +Further stepdo we need to consider all possible unifiers?
-  * ++non-ground resolution rule?|yes, take empty substitution++ +
-  * ++instantiation rule?|not by itself+++
  
-Further step: do we need to consider all unifiers?+Most general unifier for $\{A_1,​A_2\}$,​ denoted $mgu(A_1,​A_2)$
  
-Most general unifier.+To compute it we can use the standard [[Unification]] algorithm.