LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:non-ground_instantiation_and_resolution [2008/04/01 16:09]
vkuncak
sav08:non-ground_instantiation_and_resolution [2008/04/01 17:05]
vkuncak
Line 15: Line 15:
 \] \]
 ++++ ++++
- 
-===== Non-Ground Factoring ==== 
- 
-\[ 
-\frac{C \cup \{\lnot A,A\}} 
-     {C} 
-\] 
  
 ===== Non-Ground Instantiation ==== ===== Non-Ground Instantiation ====
Line 46: Line 39:
 If we try to do the proof, how do we know what to instantiate with? ++|we instantiate to enable subsequent resolution rule.++ If we try to do the proof, how do we know what to instantiate with? ++|we instantiate to enable subsequent resolution rule.++
  
-Resolution with instantiation:+**Resolution with instantiation**
 \[ \[
 \frac{C \cup \{\lnot A_1\}\ \ \ D \cup \{A_2\}} \frac{C \cup \{\lnot A_1\}\ \ \ D \cup \{A_2\}}
-     ​{subst(\sigma,C \cup D)}+     ​{subst(\sigma_1)(C\cup subst(\sigma_2)(D)}
 \] \]
-such that $subst(\sigma,A_1) = subst(\sigma,A_2)$.+such that $subst(\sigma_1)(A_1) = subst(\sigma_2)(A_2)$.
  
-Note: $\sigma$ such that $subst(\sigma,​A_1) = subst(\sigma,​A_2)$ is called a **unifier** for $\{A_1,​A_2\}$.+Resolution with instantiation generalizes resolution and ground resolution.
  
-Does resolution with instantiation subsume+One complete proof system contains
-  * ++non-ground resolution rule?|yes, take empty substitution++ +  * instantiation 
-  * ++instantiation ​rule?|not by itself+++  * resolution with instantiation 
 + 
 +Note: if we apply instantiation that renames variables in each clause, then $\sigma_1$ and $\sigma_2$ can have disjoint domains and we let $\sigma = \sigma_1 \cup \sigma_2$, obtaining 
 + 
 +Note: $\sigma$ such that $subst(\sigma)(A_1) = subst(\sigma)(A_2)$ is called a **unifier** for $\{A_1,​A_2\}$.
  
 Further step: do we need to consider all unifiers? Further step: do we need to consider all unifiers?
  
-Most general unifier.+Most general unifier. ​ To compute it we can use the standard [[Unification]] algorithm. 
 + 
 +---- 
 + 
 + 
 +**Factoring with instantiation** 
 +\[ 
 +\frac{C \cup \{A_1, A_2\}} 
 +     ​{subst(\sigma)(C)} 
 +\] 
 +where $subst(\sigma)(A_1)=subst(\sigma)(A_2)$.