LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:interpolants_from_resolution_proofs [2008/03/12 13:31]
vkuncak
sav08:interpolants_from_resolution_proofs [2008/03/26 20:26]
piskac
Line 5: Line 5:
 Let $A$, $B$ be sets of clauses such that $A \land B$ is not satisfiable. ​ An interpolant is a formula $H$ such that  Let $A$, $B$ be sets of clauses such that $A \land B$ is not satisfiable. ​ An interpolant is a formula $H$ such that 
   * $\models (A \rightarrow H)$ and $H \land B$ is not satisfiable and    * $\models (A \rightarrow H)$ and $H \land B$ is not satisfiable and 
-  * $FV(H) \subseteq FV(A) \cup FV(B)$+  * $FV(H) \subseteq FV(A) \cap FV(B)$
  
 Construct resolution tree that derives a contradiction from $A \cup B$.  The tree has elements of $A \cup B$ as leaves and results of application of resolution as nodes. ​ For each clause $C$ in resolution tree we define recursively formula $I(C)$ and show that $I(C)$ is interpolant for these two formulas: Construct resolution tree that derives a contradiction from $A \cup B$.  The tree has elements of $A \cup B$ as leaves and results of application of resolution as nodes. ​ For each clause $C$ in resolution tree we define recursively formula $I(C)$ and show that $I(C)$ is interpolant for these two formulas:
Line 18: Line 18:
     * if $C \in A$ then $I(C) = {\it false}$     * if $C \in A$ then $I(C) = {\it false}$
     * if $C \in B$ then $I(C) = {\it true}$     * if $C \in B$ then $I(C) = {\it true}$
-  * if $C$ is result of applying resolution to $C_1$, $C_2$ along propositional variable $q$ where $\lnot q \in C_1$, and $q \in C$, then+  * if $C$ is result of applying resolution to $C_1$, $C_2$ along propositional variable $q$ where $\lnot q \in C_1$, and $q \in C_2$, then
     * if $q \in FV(A) \setminus FV(B)$ then $I(C) = I(C_1) \lor I(C_2)$     * if $q \in FV(A) \setminus FV(B)$ then $I(C) = I(C_1) \lor I(C_2)$
     * if $q \in FV(B) \setminus FV(A)$ then $I(C) = I(C_1) \land I(C_2)$     * if $q \in FV(B) \setminus FV(A)$ then $I(C) = I(C_1) \land I(C_2)$