LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:homework10 [2008/04/30 15:55]
vkuncak
sav08:homework10 [2008/04/30 16:56]
vkuncak
Line 7: Line 7:
    r = \{ (F_1,F_2) \mid \models F_1 \rightarrow F_2 \}    r = \{ (F_1,F_2) \mid \models F_1 \rightarrow F_2 \}
 \] \]
-Check whether $r$ is reflexive, ​symmetric, and transitive relation.+Check whether $r$ is reflexive, ​antisymmetric, and transitive relation.
  
 ===== Problem 2 ===== ===== Problem 2 =====
  
 Let $(A,​\sqsubseteq)$ be a [[:partial order]] such that every set $S \subseteq A$ has the greatest lower bound. ​ Prove that then every set $S \subseteq A$ has the least upper bound. Let $(A,​\sqsubseteq)$ be a [[:partial order]] such that every set $S \subseteq A$ has the greatest lower bound. ​ Prove that then every set $S \subseteq A$ has the least upper bound.
- 
 ===== Problem 3 ===== ===== Problem 3 =====
  
-Let $A = [0,1] = \{ x \in \mathbb{R} \mid 0 \le x \le 1 \}$ be the interval of real numbers. ​ Recall that, by definition of real numbers and complete lattice, $(A,\le)$ is a complete lattice with least lattice element $0$ and greatest lattice element $1$.+Let $A = [0,1] = \{ x \in \mathbb{R} \mid 0 \le x \le 1 \}$ be the interval of real numbers. ​ Recall that, by definition of real numbers and complete lattice, $(A,\le)$ is a complete lattice with least lattice element $0$ and greatest lattice element $1$.  Here $\sqcup$ is the least upper bound operator on sets of real numbers, also called //​supremum//​ and denoted //sup// in real analysis.
  
 Let function $f : A \to A$ be given by Let function $f : A \to A$ be given by
Line 29: Line 28:
 === Part a) === === Part a) ===
  
-Prove that $f$ is monotonic.+Prove that $f$ is monotonic ​and injective (so it is strictly monotonic).
  
 === Part b) === === Part b) ===
Line 37: Line 36:
 === Part c) === === Part c) ===
  
-Define $iter(x) = \sqcup \{ f^n(x) \mid n \in \{0,​1,​2,​\ldots \}\}$ where $\sqcup$ ​is the least uppser bound operator on sets of real numbers (also called '​supremum'​ and denoted '​sup',​ and in this case equal to $\lim_{n\to\infty} f^n(x)$).+Define $iter(x) = \sqcup \{ f^n(x) \mid n \in \{0,​1,​2,​\ldots \}\}$.  (This is in fact equal to $\lim_{n\to\infty} f^n(x)$.)
  
-Compute $iter(0)$. ​ Is $iter(0)$ a fixpoint?  ​Compute ​$iter(iter(0))$.  ​Is $f$ an $\omega$-continuous function?+Compute $iter(0)$ ​(prove that the computed value is correct by definition of $iter$, that is, that the value is indeed $\sqcup$ of the set of values).  Is $iter(0)$ a fixpoint ​of $f$?  ​Is $iter(iter(0))$ ​a fixpoint of $f$? Is $f$ an $\omega$-continuous function?
  
 === Optional part d) === === Optional part d) ===
  
 Define a monotonic function $f : A \to A$ such that, for every natural number $k$, the value $iter^k(0)$ is not a fixpoint of $f$.  (It may be difficult to draw $f$.) Define a monotonic function $f : A \to A$ such that, for every natural number $k$, the value $iter^k(0)$ is not a fixpoint of $f$.  (It may be difficult to draw $f$.)
-