LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:homework10 [2008/04/30 15:54]
vkuncak
sav08:homework10 [2008/04/30 17:01]
vkuncak
Line 7: Line 7:
    r = \{ (F_1,F_2) \mid \models F_1 \rightarrow F_2 \}    r = \{ (F_1,F_2) \mid \models F_1 \rightarrow F_2 \}
 \] \]
-Check whether $r$ is reflexive, ​symmetric, and transitive relation.+Check whether $r$ is reflexive, ​antisymmetric, and transitive relation.
  
 ===== Problem 2 ===== ===== Problem 2 =====
Line 15: Line 15:
 ===== Problem 3 ===== ===== Problem 3 =====
  
-Let $A = [0,1] = \{ x \in \mathbb{R} \mid 0 \le x \le 1 \}$ be the interval of real numbers. ​ Recall that, by definition of real numbers and complete lattice, $(A,\le)$ is a complete lattice with least lattice element $0$ and greatest lattice element $1$.+Let $A = [0,1] = \{ x \in \mathbb{R} \mid 0 \le x \le 1 \}$ be the interval of real numbers. ​ Recall that, by definition of real numbers and complete lattice, $(A,\le)$ is a complete lattice with least lattice element $0$ and greatest lattice element $1$.  Here $\sqcup$ is the least upper bound operator on sets of real numbers, also called //​supremum//​ and denoted //sup// in real analysis.
  
 Let function $f : A \to A$ be given by Let function $f : A \to A$ be given by
Line 29: Line 29:
 === Part a) === === Part a) ===
  
-Prove that $f$ is monotonic.+Prove that $f$ is monotonic ​and injective (so it is strictly monotonic).
  
 === Part b) === === Part b) ===
Line 37: Line 37:
 === Part c) === === Part c) ===
  
-Define $iter(x) = \sqcup \{ f^n(x) \mid n \in \{0,​1,​2,​\ldots \}$ where $\sqcupis the least uppser bound operator on sets of real numbers ​(also called '​supremum'​ and denoted '​sup',​ and in this case equal to $\lim_{n\to\infty} f^n(x)$).+Define $iter(x) = \sqcup \{ f^n(x) \mid n \in \{0,​1,​2,​\ldots \}\}$.  ​(This is in fact equal to $\lim_{n\to\infty} f^n(x)$ ​when $f$ is a monotonic bounded function.)
  
-Compute $iter(0)$. ​ Is $iter(0)$ a fixpoint?  ​Compute ​$iter(iter(0))$.  ​Is $f$ an $\omega$-continuous function?+Compute $iter(0)$ ​(prove that the computed value is correct by definition of $iter$, that is, that the value is indeed $\sqcup$ of the set of values).  Is $iter(0)$ a fixpoint ​of $f$?  ​Is $iter(iter(0))$ ​a fixpoint of $f$? Is $f$ an $\omega$-continuous function?
  
 === Optional part d) === === Optional part d) ===
  
 Define a monotonic function $f : A \to A$ such that, for every natural number $k$, the value $iter^k(0)$ is not a fixpoint of $f$.  (It may be difficult to draw $f$.) Define a monotonic function $f : A \to A$ such that, for every natural number $k$, the value $iter^k(0)$ is not a fixpoint of $f$.  (It may be difficult to draw $f$.)
-