LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:herbrand_s_expansion_theorem [2008/03/24 11:24]
vkuncak
sav08:herbrand_s_expansion_theorem [2008/04/01 15:59]
giuliano
Line 23: Line 23:
 ===== Constructing a Propositional Model ===== ===== Constructing a Propositional Model =====
  
-We can view the set $expand(S)$ as a set of propositional variables ​with "long names"​.  ​+We can view the set $expand(S)$ as a set of propositional formulas whose propositional variables ​have "long names"​.  ​
  
 For an expansion of clause $C_G$ we can construct the corresponding propositional formula $p(C_G)$. For an expansion of clause $C_G$ we can construct the corresponding propositional formula $p(C_G)$.
  
 **Example** **Example**
 +Let's consider the expanded formula $F=P(f(a)) \wedge R(a, f(a))$, then $p(F)=p_1 \wedge p_4$ 
  
-Define propositional model $I_P : V \to \{{\it true},{\it false\}\}$ by +Define propositional model $I_P : V \to \{\it true},{\it false\}$ by 
 \[ \[
     I_P(p(C_G)) = e_F(C_G)(I)     I_P(p(C_G)) = e_F(C_G)(I)
Line 49: Line 50:
 ===== Constructing Herbrand Model ===== ===== Constructing Herbrand Model =====
  
-For $I = (HU,\alpha_H)$ we define $\alpha_H(R)$ so that $I_H$ evaluates ground formulas $expand(S)$ same as in $I_P$ (and thus same as in $I$).+For $I = (GT,\alpha_H)$ we define $\alpha_H(R)$ so that $I_H$ evaluates ground formulas $expand(S)$ same as in $I_P$ (and thus same as in $I$).
  
 We ensure that atomic formulas evaluate the same: We ensure that atomic formulas evaluate the same: