This is an old revision of the document!
Herbrand Model and Unsat Proof for an Example
We will look at the language where
is relation symbol of arity one
is relation symbol of arity two
is a constant
is a function symbol of two arguments
Consider this formula in :
\[
\begin{array}{l@{}l}
& (\forall x. \exists y.\ R(x,y))\ \land \\ & (\forall x. \forall y.\ R(x,y) \rightarrow \forall z.\ R(x,f(y,z)))\ \land \\ & (\forall x.\ P(x) \lor P(f(x,a)))\ \\ & \rightarrow \forall x. \exists y.\ R(x,y) \land P(y)
\end{array}
\]
We are interested in checking the validity of this formula (is it true in all interpretations). We will check the satisfiability of the negation of this formula (does it have a model):
\[
\begin{array}{l@{}l}
\lnot \bigg( \big( & (\forall x. \exists y.\ R(x,y))\ \land
& (\forall x. \forall y.\ R(x,y) \rightarrow \forall z.\ R(x,f(y,z)))\ \land \\ & (\forall x.\ P(x) \lor P(f(x,a)))\ \big)\\ & \rightarrow \forall x. \exists y.\ R(x,y) \land P(y) \bigg)
\end{array} \]
Parsing the formula.
Negation normal form.
Skolem normal form for each clause.
Herbrand universe.
Propositional expansion.
Propositional proof.
Recovering first-order proof from propositional proof.