LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:first-order_logic_semantics [2008/03/19 21:46]
damien
sav08:first-order_logic_semantics [2008/04/02 20:49]
vkuncak
Line 32: Line 32:
 ++++How do we evaluate quantifiers?​| ++++How do we evaluate quantifiers?​|
 \[\begin{array}{rcl} \[\begin{array}{rcl}
-e_F(\exists x.F) &=& (\exists d \in D_I.\ e_F(F)(I[x \mapsto d])) \\ +e_F(\exists x.F)((D_I,​\alpha_I)) &=& (\exists d \in D_I.\ e_F(F)((D_I,​\alpha_I[x \mapsto d])) \\ 
-e_F(\forall x.F) &=& (\forall d \in D_I.\ e_F(F)(I[x \mapsto d]))+e_F(\forall x.F)((D_I,​\alpha_I)) &=& (\forall d \in D_I.\ e_F(F)((D_I,​\alpha_I[x \mapsto d]))
 \end{array} \end{array}
 \] \]
-where $I[x \mapsto d] = (D_I,​\alpha^\prime_I)and +See [[Sets and relations#​function update|function update notation]] for definition of $\alpha_I[x \mapsto d]$.
-$\alpha^\prime_I(v) = \left \{ { {\alpha_I(v)~~\text{if}~ v \neq x} ~~ \atop {d ~~~~\text{if} ~ v=x}} \right$+
 ++++ ++++
  
Line 130: Line 129:
 With an empty domain, this formula would be false. With an empty domain, this formula would be false.
 There are other problems, for instance "how to evaluate a variable?"​. There are other problems, for instance "how to evaluate a variable?"​.
 +
  
 ===== Satisfiability,​ Validity, and Semantic Consequence ===== ===== Satisfiability,​ Validity, and Semantic Consequence =====
Line 149: Line 149:
 \[ \[
 \begin{array}{rcl} \begin{array}{rcl}
-T \models G & \leftrightarrow &  \forall I. ((\forall F \in T. e_F(F)(I)) \rightarrow e_F(G)) \\ +T \models G & \leftrightarrow &  \forall I. ((\forall F \in T. e_F(F)(I)) \rightarrow e_F(G)(I)) \\ 
-            & \leftrightarrow &  \forall I. (\lnot (\forall F \in T. e_F(F)(I)) \lor \lnot e_F(\lnot G)) \\ +            & \leftrightarrow &  \forall I. (\lnot (\forall F \in T. e_F(F)(I)) \lor \lnot e_F(\lnot G)(I)) \\ 
-            & \leftrightarrow &  \forall I. (\exists F \in T. \lnot e_F(F)(I)) \lor \lnot e_F(\lnot G)) \\+            & \leftrightarrow &  \forall I. (\exists F \in T. \lnot e_F(F)(I)) \lor \lnot e_F(\lnot G)(I)) \\
             & \leftrightarrow &  \forall I. \exists F \in T \cup \{\lnot G\}. \lnot e_F(F)(I) \\             & \leftrightarrow &  \forall I. \exists F \in T \cup \{\lnot G\}. \lnot e_F(F)(I) \\
             & \leftrightarrow & \lnot \exists I. \forall F \in T \cup \{\lnot G\}. e_F(F)(I) \\             & \leftrightarrow & \lnot \exists I. \forall F \in T \cup \{\lnot G\}. e_F(F)(I) \\