LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:first-order_logic_semantics [2008/03/19 21:28]
damien
sav08:first-order_logic_semantics [2008/04/02 20:49]
vkuncak
Line 32: Line 32:
 ++++How do we evaluate quantifiers?​| ++++How do we evaluate quantifiers?​|
 \[\begin{array}{rcl} \[\begin{array}{rcl}
-e_F(\exists x.F) &=& (\exists d \in D_I.\ e_F(F)(I[x \mapsto d])) \\ +e_F(\exists x.F)((D_I,​\alpha_I)) &=& (\exists d \in D_I.\ e_F(F)((D_I,​\alpha_I[x \mapsto d])) \\ 
-e_F(\forall x.F) &=& (\forall d \in D_I.\ e_F(F)(I[x \mapsto d]))+e_F(\forall x.F)((D_I,​\alpha_I)) &=& (\forall d \in D_I.\ e_F(F)((D_I,​\alpha_I[x \mapsto d]))
 \end{array} \end{array}
 \] \]
-where $I[x \mapsto d] = (D_I,​\alpha^\prime_I)and +See [[Sets and relations#​function update|function update notation]] for definition of $\alpha_I[x \mapsto d]$.
-$\alpha^\prime_I(v) = \left \{ { {\alpha_I(v)~~\text{if}~ v \neq x} ~~ \atop {d ~~~~\text{if} ~ v=x}} \right$+
 ++++ ++++
  
Line 116: Line 115:
 $false$ $false$
 ++  ++ 
 +
  
 ==== Domain Non-Emptiness ==== ==== Domain Non-Emptiness ====
Line 124: Line 124:
 \] \]
 What is its truth value in $I$?  Which condition on definition of $I$ did we use? What is its truth value in $I$?  Which condition on definition of $I$ did we use?
 +
 +This formula is true with the assumption that $D$ is not empty.
 +
 +With an empty domain, this formula would be false.
 +There are other problems, for instance "how to evaluate a variable?"​.
  
  
Line 144: Line 149:
 \[ \[
 \begin{array}{rcl} \begin{array}{rcl}
-T \models G & \leftrightarrow &  \forall I. ((\forall F \in T. e_F(F)(I)) \rightarrow e_F(G)) \\ +T \models G & \leftrightarrow &  \forall I. ((\forall F \in T. e_F(F)(I)) \rightarrow e_F(G)(I)) \\ 
-            & \leftrightarrow &  \forall I. (\lnot (\forall F \in T. e_F(F)(I)) \lor \lnot e_F(\lnot G)) \\ +            & \leftrightarrow &  \forall I. (\lnot (\forall F \in T. e_F(F)(I)) \lor \lnot e_F(\lnot G)(I)) \\ 
-            & \leftrightarrow &  \forall I. (\exists F \in T. \lnot e_F(F)(I)) \lor \lnot e_F(\lnot G)) \\+            & \leftrightarrow &  \forall I. (\exists F \in T. \lnot e_F(F)(I)) \lor \lnot e_F(\lnot G)(I)) \\
             & \leftrightarrow &  \forall I. \exists F \in T \cup \{\lnot G\}. \lnot e_F(F)(I) \\             & \leftrightarrow &  \forall I. \exists F \in T \cup \{\lnot G\}. \lnot e_F(F)(I) \\
             & \leftrightarrow & \lnot \exists I. \forall F \in T \cup \{\lnot G\}. e_F(F)(I) \\             & \leftrightarrow & \lnot \exists I. \forall F \in T \cup \{\lnot G\}. e_F(F)(I) \\