LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:first-order_logic_semantics [2008/03/19 21:24]
damien
sav08:first-order_logic_semantics [2008/04/02 20:46]
vkuncak
Line 32: Line 32:
 ++++How do we evaluate quantifiers?​| ++++How do we evaluate quantifiers?​|
 \[\begin{array}{rcl} \[\begin{array}{rcl}
-e_F(\exists x.F) &=& (\exists d \in D_I.\ e_F(F)(I[x \mapsto d])) \\ +e_F(\exists x.F)(I) &=& (\exists d \in D_I.\ e_F(F)(I[x \mapsto d])) \\ 
-e_F(\forall x.F) &=& (\forall d \in D_I.\ e_F(F)(I[x \mapsto d]))+e_F(\forall x.F)(I) &=& (\forall d \in D_I.\ e_F(F)(I[x \mapsto d]))
 \end{array} \end{array}
 \] \]
Line 92: Line 92:
 \] \]
 ++++ ++++
 +
  
  
Line 104: Line 105:
     \forall x.\, \exists y.\, dvd(x,y)     \forall x.\, \exists y.\, dvd(x,y)
 \] \]
-++++answer| ​+++answer| ​
 $true$. For any $x$ choose $y$ as $2 \cdot x$. $true$. For any $x$ choose $y$ as $2 \cdot x$.
-++++ +++ 
 What is the truth value of this formula What is the truth value of this formula
 \[ \[
     \exists x.\, \forall y. dvd(x,y)     \exists x.\, \forall y. dvd(x,y)
 \] \]
-++++answer|+++answer|
 $false$ $false$
-++++ +++  
  
 ==== Domain Non-Emptiness ==== ==== Domain Non-Emptiness ====
Line 122: Line 125:
 \] \]
 What is its truth value in $I$?  Which condition on definition of $I$ did we use? What is its truth value in $I$?  Which condition on definition of $I$ did we use?
 +
 +This formula is true with the assumption that $D$ is not empty.
 +
 +With an empty domain, this formula would be false.
 +There are other problems, for instance "how to evaluate a variable?"​.
  
  
Line 142: Line 150:
 \[ \[
 \begin{array}{rcl} \begin{array}{rcl}
-T \models G & \leftrightarrow &  \forall I. ((\forall F \in T. e_F(F)(I)) \rightarrow e_F(G)) \\ +T \models G & \leftrightarrow &  \forall I. ((\forall F \in T. e_F(F)(I)) \rightarrow e_F(G)(I)) \\ 
-            & \leftrightarrow &  \forall I. (\lnot (\forall F \in T. e_F(F)(I)) \lor \lnot e_F(\lnot G)) \\ +            & \leftrightarrow &  \forall I. (\lnot (\forall F \in T. e_F(F)(I)) \lor \lnot e_F(\lnot G)(I)) \\ 
-            & \leftrightarrow &  \forall I. (\exists F \in T. \lnot e_F(F)(I)) \lor \lnot e_F(\lnot G)) \\+            & \leftrightarrow &  \forall I. (\exists F \in T. \lnot e_F(F)(I)) \lor \lnot e_F(\lnot G)(I)) \\
             & \leftrightarrow &  \forall I. \exists F \in T \cup \{\lnot G\}. \lnot e_F(F)(I) \\             & \leftrightarrow &  \forall I. \exists F \in T \cup \{\lnot G\}. \lnot e_F(F)(I) \\
             & \leftrightarrow & \lnot \exists I. \forall F \in T \cup \{\lnot G\}. e_F(F)(I) \\             & \leftrightarrow & \lnot \exists I. \forall F \in T \cup \{\lnot G\}. e_F(F)(I) \\