LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:first-order_logic_semantics [2008/03/19 21:09]
damien typo + answer to the evaluation
sav08:first-order_logic_semantics [2008/03/19 21:52]
damien
Line 92: Line 92:
 \] \]
 ++++ ++++
 +
 +
  
 ==== Example with Infinite Domain ==== ==== Example with Infinite Domain ====
  
-Consider language ${\cal L} = \{ s, dvd \}$ where $s$ is a unary function symbol ($ar(s)=1$) and ${<}$ is a binary relation symbol ($ar({<})=2$). ​ Let $I = (D,\alpha)$ where $D = \{7, 8, 9, 10, \ldots\}$. ​ Let $dvd$ be defined as the "​strictly divides"​ relation:+Consider language ${\cal L} = \{ s, dvd \}$ where $s$ is a unary function symbol ($ar(s)=1$) and $dvd$ is a binary relation symbol ($ar(dvd)=2$). ​ Let $I = (D,\alpha)$ where $D = \{7, 8, 9, 10, \ldots\}$. ​ Let $dvd$ be defined as the "​strictly divides"​ relation:
 \[ \[
    ​\alpha(dvd) = \{ (i,​j).\ ​ \exists k \in \{2,​3,​4,​\ldots\}.\ j = k \cdot i \}    ​\alpha(dvd) = \{ (i,​j).\ ​ \exists k \in \{2,​3,​4,​\ldots\}.\ j = k \cdot i \}
Line 103: Line 105:
     \forall x.\, \exists y.\, dvd(x,y)     \forall x.\, \exists y.\, dvd(x,y)
 \] \]
 +++answer| ​
 +$true$. For any $x$ choose $y$ as $2 \cdot x$.
 +++
 +
 What is the truth value of this formula What is the truth value of this formula
 \[ \[
     \exists x.\, \forall y. dvd(x,y)     \exists x.\, \forall y. dvd(x,y)
 \] \]
 +++answer|
 +$false$
 +++ 
 +
  
 ==== Domain Non-Emptiness ==== ==== Domain Non-Emptiness ====
Line 115: Line 125:
 \] \]
 What is its truth value in $I$?  Which condition on definition of $I$ did we use? What is its truth value in $I$?  Which condition on definition of $I$ did we use?
 +
 +This formula is true with the assumption that $D$ is not empty.
 +
 +With an empty domain, this formula would be false.
 +There are other problems, for instance "how to evaluate a variable?"​.
  
  
Line 135: Line 150:
 \[ \[
 \begin{array}{rcl} \begin{array}{rcl}
-T \models G & \leftrightarrow &  \forall I. ((\forall F \in T. e_F(F)(I)) \rightarrow e_F(G)) \\ +T \models G & \leftrightarrow &  \forall I. ((\forall F \in T. e_F(F)(I)) \rightarrow e_F(G)(I)) \\ 
-            & \leftrightarrow &  \forall I. (\lnot (\forall F \in T. e_F(F)(I)) \lor \lnot e_F(\lnot G)) \\ +            & \leftrightarrow &  \forall I. (\lnot (\forall F \in T. e_F(F)(I)) \lor \lnot e_F(\lnot G)(I)) \\ 
-            & \leftrightarrow &  \forall I. (\exists F \in T. \lnot e_F(F)(I)) \lor \lnot e_F(\lnot G)) \\+            & \leftrightarrow &  \forall I. (\exists F \in T. \lnot e_F(F)(I)) \lor \lnot e_F(\lnot G)(I)) \\
             & \leftrightarrow &  \forall I. \exists F \in T \cup \{\lnot G\}. \lnot e_F(F)(I) \\             & \leftrightarrow &  \forall I. \exists F \in T \cup \{\lnot G\}. \lnot e_F(F)(I) \\
             & \leftrightarrow & \lnot \exists I. \forall F \in T \cup \{\lnot G\}. e_F(F)(I) \\             & \leftrightarrow & \lnot \exists I. \forall F \in T \cup \{\lnot G\}. e_F(F)(I) \\