LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:axioms_for_equality [2008/04/02 00:43]
vkuncak
sav08:axioms_for_equality [2008/04/02 21:40]
vkuncak
Line 7: Line 7:
   * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ |   * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ |
 \[ \[
-   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n x_i y_i) \rightarrow f(x_1,​\ldots,​x_n) ​f(y_1,​\ldots,​y_n)+   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n ​eq(x_i,y_i)) \rightarrow ​eq(f(x_1,​\ldots,​x_n),f(y_1,​\ldots,​y_n))
 \] \]
 ++ ++
   * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ |   * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ |
 \[ \[
-   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n x_i y_i) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n))+   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n ​eq(x_i,y_i)) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n))
 \] \]
 ++ ++
  
-Note: if an interpretation $(D,I)$ satisfies ​$AxEq$, then we call $e_F(I)(eq)$ (the interpretation of eq) a //​congruence//​ relation for $(D,I)$. +**Definition:** if an interpretation $I = (D,\alpha)$ the axioms ​$AxEq$ ​are true, then we call $\alpha(eq)$ (the interpretation of eq) a //​congruence//​ relation for interpretation ​$I$.
- +
-=== Example: quotient on pairs of natural numbers === +
- +
-Let ${\cal N} = \{0,​1,​2,​\ldots,​ \}$.  Consider a structure with domain $N^2$, with functions +
-\[ +
-    p((x_1,​y_1),​(x_2,​y_2)) = (x_1 + x_2, y_1 + y_2) +
-\] +
-\[ +
-    m((x_1,​y_1),​(x_2,​y_2)) = (x_1 + y_2, y_1 + x_2) +
-\] +
-Relation $r$ defined by +
-\[ +
-   r = \{((x_1,​y_1),​(x_2,​y_2)) \mid x_1 + y_2 = x_2 + y_1  \} +
-\] +
-is a congruence with respect to operations $p$ and $m$.   +
- +
-Congruence is an equivalence relation. ​ What is the equivalence class for element $(1,​1)$? ​  +
- +
-$[(1,1)] = $ ++| $\{ (x,y) \mid x=y \}$ +
- +
-$[(10,1)] = $ ++| $\{ (x,y) \mid x=y+9 \}$ +
- +
-$[(1,10)] = $ ++| $\{ (x,y) \mid x+9=y \}$ +
- +
-Whenever we have a congruence in an interpretation,​ we can shrink the structure to a smaller one by merging elements that are in congruence. ​ In the resulting structure we can define operations $p$ and $m$ such that the following holds: +
-\[ +
-\begin{array}{l} +
-   p( [(x_1,y_1)] , [(x_2,y_2)] ) = [(x_1 + x_2, y_1 + y_2)] \\ +
-   m( [(x_1,y_1)] , [(x_2,y_2)] ) = [(x_1 + y_2, y_1 + x_2)]  +
-\end{array} +
-\] +
-This construction is an algebraic approach to construct from natural numbers one well-known structure. ​ Which one? ++| $({\cal Z}, + , -)$ where ${\cal Z}$ is the set of integers. +++
  
 ===== References ===== ===== References =====
   * [[Calculus of Computation Textbook]], Section 3.1   * [[Calculus of Computation Textbook]], Section 3.1