LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:axioms_for_equality [2008/04/02 00:12]
vkuncak
sav08:axioms_for_equality [2009/05/05 23:21]
vkuncak
Line 7: Line 7:
   * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ |   * Congruence for function symbols: for $f \in {\cal L}$ function symbol with $ar(f)=n$, ++ |
 \[ \[
-   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n x_i y_i) \rightarrow f(x_1,​\ldots,​x_n) ​f(y_1,​\ldots,​y_n)+   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n ​eq(x_i,y_i)) \rightarrow ​eq(f(x_1,​\ldots,​x_n),f(y_1,​\ldots,​y_n))
 \] \]
 ++ ++
   * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ |   * Congruence for relation symbols: for $R \in {\cal L}$ relation symbol with $ar(R)=n$, ++ |
 \[ \[
-   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n x_i y_i) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n))+   ​\forall x_1,​\ldots,​x_n,​ y_1,​\ldots,​y_n.\ (\bigwedge_{i=1}^n ​eq(x_i,y_i)) \rightarrow (R(x_1,​\ldots,​x_n) \leftrightarrow R(y_1,​\ldots,​y_n))
 \] \]
 ++ ++
  
-Note: if a structure ​$(D,I)$ satisfies ​$AxEq$, then we call $e_F(I)(eq)a //​congruence//​ relation.+**Definition:** if an interpretation ​$I = (D,\alpha)$ the axioms ​$AxEq$ ​are true, then we call $\alpha(eq)(the interpretation of eq) a //​congruence//​ relation ​for interpretation $I$. 
 + 
 +**Side remark:** Functions are relations. ​ However, the condition above for function symbols is weaker than the condition for relation symbols. ​ If $f$ is a function, then the relation $\{(x_1,​\ldots,​x_n,​f(x_1,​\ldots,​x_n)) \mid x_1,​\ldots,​x_n \in D \}$ does not satisfy the congruence condition because it only has one result, namely $f(x_1,​\ldots,​x_n)$,​ and not all the results that are in relation eq with $f(x_1,​\ldots,​x_n)$. However, if we start from the condition for functions and treat relations as functions that return true or false, we obtain the condition for relations. So, it makes sense here to treat relations as a special case of functions.
  
 ===== References ===== ===== References =====
   * [[Calculus of Computation Textbook]], Section 3.1   * [[Calculus of Computation Textbook]], Section 3.1