LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav07_lecture_6 [2007/04/15 23:44]
mirco.dotta
sav07_lecture_6 [2007/04/16 01:12]
mirco.dotta
Line 125: Line 125:
 \end{equation*} \end{equation*}
 where $\theta$ is the most general unifier of $A_1$ and $A_2$. where $\theta$ is the most general unifier of $A_1$ and $A_2$.
 +
 +
 +
 +
  
  
Line 136: Line 140:
  
  
-Proof that the formula(1) is valid, by proving that the negation of the formula does not end with a counter-example.+Proof that the formula(1) is valid, by proving that the negation of the formula does not end with a counter-example ​ 
 +(same principle seen in lecture 5 to prove validity of loop invariant)
  
 ¬(∃y.∀x.R(x,​y) => ∀x.∃y.R(x,​y)) \\ ¬(∃y.∀x.R(x,​y) => ∀x.∃y.R(x,​y)) \\
Line 160: Line 165:
   by: ¬(∃x.F) <=> ∀x.¬F ​  ​and ​  ​¬(∀x.F) <=> ∃x.¬F   by: ¬(∃x.F) <=> ∀x.¬F ​  ​and ​  ​¬(∀x.F) <=> ∃x.¬F
 ∀x.∃y.R(x,​y) ∧ ∀y.∃x.¬R(x,​y)\\ ∀x.∃y.R(x,​y) ∧ ∀y.∃x.¬R(x,​y)\\
-  by: Skolenization+  by: Skolemization
 {R(x, s1(x)), ¬R(s2(y),​y)}\\ {R(x, s1(x)), ¬R(s2(y),​y)}\\
   by: Unification ​  ​s1(x)=y ​ and  x=s2(y) then s1(s2(y))=y   by: Unification ​  ​s1(x)=y ​ and  x=s2(y) then s1(s2(y))=y
   by: Adding a constant '​a'​   by: Adding a constant '​a'​
 R.{s1,s2,a} = L \\ R.{s1,s2,a} = L \\
 +\\
 +Term(L) = {a, s1(a), s2(a), s1(s1(a)), ...} \\
 \\ \\
 [R]e<​sub>​T</​sub>​ = {(t,s1(t)) | t ∈ Term(L)} where e<​sub>​T</​sub>:​ F => {true, false} ​ and  T => Term(L)\\ [R]e<​sub>​T</​sub>​ = {(t,s1(t)) | t ∈ Term(L)} where e<​sub>​T</​sub>:​ F => {true, false} ​ and  T => Term(L)\\
Line 176: Line 183:
 ∀t ∈ Term(L) ¬[R(s2(y),​y) ] R(s2(y),​y)]e<​sub>​T[y:​=t]</​sub>​ \\ ∀t ∈ Term(L) ¬[R(s2(y),​y) ] R(s2(y),​y)]e<​sub>​T[y:​=t]</​sub>​ \\
 \\ \\
 +[R]e<​sub>​T</​sub>​ = {(a,s1(a)), (s1(a),​s1(s1(a))),​ (s2(a), s2(s2(a))), ...} \\
 \\ \\
 +Then we should find a pair (tx,ty) s.t. (tx,ty) ∉ [R]. A possible counter-example is (tx,a) ∉ [R], Vtx
 \\ \\
 Consider case where R denotes less than relation on integers and Ev denotes that integer is even Consider case where R denotes less than relation on integers and Ev denotes that integer is even