LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav07_lecture_4 [2007/03/27 16:28]
leander.eyer
sav07_lecture_4 [2007/03/27 16:46]
leander.eyer
Line 139: Line 139:
  
 and is represented by the function a[0->​3][1->​2][2->​1]. Therefore, the last value of the array is expressed as a[0->​3][1->​2][2->​1](2) = 1. and is represented by the function a[0->​3][1->​2][2->​1]. Therefore, the last value of the array is expressed as a[0->​3][1->​2][2->​1](2) = 1.
 +
  
  
Line 168: Line 169:
 ===Avoiding exponential explosion using flattening=== ===Avoiding exponential explosion using flattening===
  
-Desugaring if-then-else expressions introduces a disjunction of two conjunction. If conditional expressions are embedded, the number of conjunction and conjunctions will explode.+Desugaring if-then-else expressions introduces a disjunction of two conjunctions. If conditional expressions are embedded, the number of conjunctions ​and disjunctions ​will explode.
  
 To avoid this explosion of terms, one may introduce additional //​variables//​. For instance, the expression: To avoid this explosion of terms, one may introduce additional //​variables//​. For instance, the expression:
Line 176: Line 177:
 can be flattened as  can be flattened as 
  
-y<​sub>​1</​sub>​ = y + 5 + y<​sub>​1</​sub>​ = y + 5\\ 
-∧ y<​sub>​2</​sub>​ = 3y<​sub>​1</​sub>​ + ∧ y<​sub>​2</​sub>​ = 3y<​sub>​1</​sub>​\\ 
-∧ x < y<​sub>​2</​sub>​+ ∧ x < y<​sub>​2</​sub>​\\
  
-This gives a new grammar for //​atomic ​formula//:+This gives a new grammar for //​atomic ​formulas//:
  
 A := R(v,...,v) | v = f(v,...,v) | v = c A := R(v,...,v) | v = f(v,...,v) | v = c
Line 191: Line 192:
  a = a [t<​sub>​1</​sub>​->​t<​sub>​2</​sub>​]; ​  a = a [t<​sub>​1</​sub>​->​t<​sub>​2</​sub>​]; ​
  
-The value of K is know for //global arrays// (statically defined). The case of dynamically allocated arrays (like the one in Java) will be dealt in a  ​following ​section.+The value of K is known for //global arrays// (statically defined). The case of dynamically allocated arrays (like the one in Java) will be dealt in a  ​further ​section. 
  
  
Line 216: Line 218:
 Possible mathematical model: fields as functions from objects to objects. Possible mathematical model: fields as functions from objects to objects.
  
-  left : Node => Node +  left : Node -> Node 
-  right : Node => Node+  right : Node -> Node
  
 What is the meaning of assignment? What is the meaning of assignment?
Line 268: Line 270:
   assume(x ∉ alloc);   assume(x ∉ alloc);
   alloc = alloc ∪ {x}   alloc = alloc ∪ {x}
 +
  
  
Line 273: Line 276:
 ==== Dynamically allocated arrays ==== ==== Dynamically allocated arrays ====
  
-When we allow dynamically allocated arrays, we introduce ​an additional parameter to the array function ​which identifies the array in question.+When we allow dynamically allocated arrays, we introduce ​a new global function **array** which maps a pair (arrayID, index) to values.
  
   x[i] = v;   x[i] = v;
Line 286: Line 289:
  
 ===== Proving formulas with uninterpreted functions ===== ===== Proving formulas with uninterpreted functions =====
 +
  
  
Line 300: Line 304:
 The congruence closure algorithm can be used to proove the correctness of quantifier free formulas by examining congruence closures of the statements in the formula. The congruence closure algorithm can be used to proove the correctness of quantifier free formulas by examining congruence closures of the statements in the formula.
  
-Recall the following properties of relations:+Recall the following properties of the relation **equivalence**:
   - x = x (everything is equal to itself)   - x = x (everything is equal to itself)
   - x = y -> y = x (reflexivity)   - x = y -> y = x (reflexivity)
   - x = y ∧ y = z -> x = z (transitivity)   - x = y ∧ y = z -> x = z (transitivity)
-  - (x1 = x2 ∧ y1 = y2) -> f(x1, y1) = f(x2, y2) (equivalence ​in functions)+ 
 +A congruence is an equivalence relationship with the additional property 
 +  * (x1 = x2 ∧ y1 = y2) -> f(x1, y1) = f(x2, y2) 
 + 
 +  a ≡ b (mod n) is a congruence ​in respect to addition. Indeed: 
 + 
 + a ≡ b (mod n) ∧ c ≡ d (mod n) -> a + c ≡ b + d (mod n)
  
 Equality is a congruence with respect to all function symbols. Equality is a congruence with respect to all function symbols.