LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav07_lecture_3_skeleton [2007/03/21 10:59]
vkuncak
sav07_lecture_3_skeleton [2007/03/21 14:20]
vkuncak
Line 1: Line 1:
 ====== Lecture 3 (Skeleton) ====== ====== Lecture 3 (Skeleton) ======
 +
 +Recall what we are doing:
 +
 +{{vcg-big-picture.png}
  
 ===== Converting programs (with simple values) to formulas ===== ===== Converting programs (with simple values) to formulas =====
 +
  
  
Line 11: Line 16:
   * we can represent relations using set comprehensions;​ if our program c has two state components, we can represent its meaning R( c ) as $\{((x_0,​y_0),​(x,​y)) \mid F  \}$, where F is some formula that has x,y,x_0,y_0 as free variables.   * we can represent relations using set comprehensions;​ if our program c has two state components, we can represent its meaning R( c ) as $\{((x_0,​y_0),​(x,​y)) \mid F  \}$, where F is some formula that has x,y,x_0,y_0 as free variables.
  
-  * this is what I mean by ''​simple values''​later we will talk about modeling pointers and arrays, but we will still use this as a starting point.+  * simple values: ​variables are integers. ​ Later we will talk about modeling pointers and arrays, but what we say now applies
  
 Our goal is to find rules for computing R( c ) that are Our goal is to find rules for computing R( c ) that are
Line 24: Line 29:
  
   R( c ) -> error=false   R( c ) -> error=false
 +
  
  
Line 37: Line 43:
  
   R(havoc x) = frame(x)   R(havoc x) = frame(x)
-  R(assume F) = F[x:=x_0, y:=y_0, error:​=error_0]+  R(assume F) = F[x:=x_0, y:=y_0, error:​=error_0] ​& frame()
   R(assert F) = (F -> frame)   R(assert F) = (F -> frame)
  
Line 152: Line 158:
 Alternative:​ Alternative:​
   * decide that you will only loop for formulas of restricted form, as in abstract interpretation and data flow analysis (next week)   * decide that you will only loop for formulas of restricted form, as in abstract interpretation and data flow analysis (next week)
 +
  
  
Line 163: Line 170:
 \end{equation*} \end{equation*}
  
-whose validity we need to prove. ​ We here assume that F contains only  +whose validity we need to prove. ​ We here assume that F contains only linear arithmetic.  ​Note: we can check satisfiability of $F\ \land\ (\mbox{error}=\mbox{true})$.  We show an algorithm to check this satisfiability.
- +
-Note: we can check satisfiability of $F\ \land\ (\mbox{error}=\mbox{true})$.+
  
 ==== Quantifier Presburger arithmetic ==== ==== Quantifier Presburger arithmetic ====
Line 175: Line 180:
   T ::= var | T + T | K * T                (terms)   T ::= var | T + T | K * T                (terms)
   A ::= T=T | T <= T                       ​(atomic formulas)   A ::= T=T | T <= T                       ​(atomic formulas)
-  F ::= F & F |  F|F  |  ~F                (formulas)+  F ::= A  |  ​F & F |  F|F  |  ~F          (formulas)
  
 To get full Presburger arithmetic, allow existential and universal quantifiers in formula as well. To get full Presburger arithmetic, allow existential and universal quantifiers in formula as well.
Line 184: Line 189:
  
 Proof: small model theorem. Proof: small model theorem.
 +
  
  
Line 212: Line 218:
   * solution of Ax=b (A regular) has as components rationals of form p/q with bounded p,q   * solution of Ax=b (A regular) has as components rationals of form p/q with bounded p,q
   * duality of linear programming   * duality of linear programming
-  * obtains bound $M = n(ma)^{2m+1}$,​ which needs $(2m+1)(\log n + \log m + \log a)$ bits+  * obtains bound $M = n(ma)^{2m+1}$,​ which needs $\log n + (2m+1)\log(ma)$ bits
   * we could encode the problem into SAT: use circuits for addition, comparison etc.   * we could encode the problem into SAT: use circuits for addition, comparison etc.
  
Line 240: Line 246:
   * Presburger Arithmetic (PA) bounds: {{papadimitriou81complexityintegerprogramming.pdf}}   * Presburger Arithmetic (PA) bounds: {{papadimitriou81complexityintegerprogramming.pdf}}
   * Specializing PA bounds: http://​www.lmcs-online.org/​ojs/​viewarticle.php?​id=43&​layout=abstract   * Specializing PA bounds: http://​www.lmcs-online.org/​ojs/​viewarticle.php?​id=43&​layout=abstract
- 
- 
- 
-