LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav07_lecture_3_skeleton [2007/03/20 14:54]
vkuncak
sav07_lecture_3_skeleton [2007/03/21 14:27]
vkuncak
Line 1: Line 1:
 ====== Lecture 3 (Skeleton) ====== ====== Lecture 3 (Skeleton) ======
  
-===== Converting programs (with simple values) to formulas =====+Summary of what we are doing in today'​s class:
  
 +{{vcg-big-picture.png}}
 +
 +
 +===== Verification condition generation: converting programs into formulas =====
  
 ==== Context ==== ==== Context ====
Line 9: Line 13:
   * represent programs using guarded command language, e.g. desugaring of '​if'​ into non-deterministic choice and assume   * represent programs using guarded command language, e.g. desugaring of '​if'​ into non-deterministic choice and assume
   * give meaning to guarded command language statements as relations   * give meaning to guarded command language statements as relations
-  * we can represent relations using set comprehensions;​ if our program c has two state components, we can represent its meaning R( c ) as +  * we can represent relations using set comprehensions;​ if our program c has two state components, we can represent its meaning R( c ) as $\{((x_0,​y_0),​(x,​y)) \mid F  \}$, where F is some formula that has x,y,x_0,y_0 as free variables.
-<​latex>​ +
-\{((x_0,​y_0),​(x,​y)) \mid F \} +
-</​latex> ​      +
-where F is some formula that has x,y,x_0,y_0 as free variables.+
  
-  * this is what I mean by ''​simple values''​later we will talk about modeling pointers and arrays, but we will still use this as a starting point.+  * simple values: ​variables are integers. ​ Later we will talk about modeling pointers and arrays, but what we say now applies
  
 Our goal is to find rules for computing R( c ) that are Our goal is to find rules for computing R( c ) that are
   * correct   * correct
   * efficient   * efficient
-  * create formulas that we can prove later+  * create formulas that we can effectively ​prove later 
 + 
 + 
 +What exactly do we prove about the formula R( c ) ? 
 + 
 +We prove that this formula is **valid**:​ 
 + 
 +  R( c ) -> error=false 
  
  
Line 34: Line 42:
  
   R(havoc x) = frame(x)   R(havoc x) = frame(x)
-  R(assume F) = F[x:=x_0, y:=y_0, error:​=error_0]+  R(assume F) = F[x:=x_0, y:=y_0, error:​=error_0] ​& frame()
   R(assert F) = (F -> frame)   R(assert F) = (F -> frame)
  
Line 64: Line 72:
  
 when c is a basic command. when c is a basic command.
 +
 +
  
  
Line 85: Line 95:
 We can apply these rules to reduce the size of formulas. We can apply these rules to reduce the size of formulas.
  
-==== Papers ====+ 
 +==== Approximation ==== 
 + 
 +If (F -> G) is value, we say that F is stronger than F and we say G is weaker than F. 
 + 
 +When a formula would be too complicated,​ we can instead create a simpler approximate formula. ​ To be sound, if our goal is to prove a property, we need to generate a *larger* relation, which corresponds to a weaker formula describing a relation, and a stronger verification condition. ​ (If we were trying to identify counterexamples,​ we would do the opposite). 
 + 
 +We can replace "​assume F" with "​assume F1" where F1 is weaker. ​ Consequences:​ 
 +  * omtiting complex if conditionals (assuming both branches can happen - as in most type systems) 
 +  * replacing complex assignments with arbitrary change to variable: because x=t is havoc(x);​assume(x=t) and we drop the assume 
 + 
 +This idea is important in static analysis. 
 + 
 + 
 + 
 + 
 + 
 + 
 + 
 + 
 +==== Symbolic execution ==== 
 + 
 +Symbolic execution converts programs into formulas by going forward. ​ It is therefore somewhat analogous to the way an [[interpreter]] for the language would work.   
 + 
 +Avoid renaming all the time. 
 + 
 +  SE(F,k, c1; c2) = SE(F & R(c1), k+1, c2)             ​(update formula) 
 + 
 +  SE(F,k,(c1 [] c2); c2) = SE(F, k, c1) | SE(F,​k,​c2) ​  ​(explore both branches) 
 + 
 +Note: how many branches do we get? 
 + 
 +Strongest postcondition:​ 
 +\begin{equation*} 
 +  sp(P,r) = \{ s_2 \mid \exists s_1.\ s_1 \in P \land (s_1,s_2) \in r \} 
 +\end{equation*} 
 +Like composition of a set with a relation. ​ It's called ''​relational image''​ of set $P$ under relation $r$. 
 + 
 +Note: when proving our verification condition, instead of proving that semantics of relation implies error=false,​ it's same as proving that the formula for set sp(U,r) implies error=false,​ where U is the universal relation, or, in terms of formulas, computing the strongest postcondition of formula '​true'​. 
 + 
 +==== Weakest preconditions ==== 
 + 
 +While symbolic execution computes formula by going forward along the program syntax tree, weakest precondition computes formula by going backward. 
 + 
 +  wp(Q, x=t) = 
 +  wp(Q, assume F) = 
 +  wp(Q, assert F) = 
 +  wp(Q, c1 [] c2) =  
 +  wp(Q, c1 ; c2) =  
 + 
 +==== Inferring Loop Invariants ==== 
 + 
 +Suppose we compute strongest postcondition in a program where we unroll loop k times. 
 +  * What does it denote? ​  
 +  * What is its relationship to loop invariant?​ 
 + 
 +Weakening strategies 
 +  * maintain a conjunction 
 +  * drop conjuncts that do not remain true 
 + 
 +Alternative:​ 
 +  * decide that you will only loop for formulas of restricted form, as in abstract interpretation and data flow analysis (next week) 
 + 
 + 
 + 
 + 
 + 
 +===== One useful decision procedure: Proving quantifier-free linear arithmetic formulas ===== 
 + 
 +Suppose that we obtain (one or more) verification conditions of the form 
 +\begin{equation*} 
 + F\ \rightarrow\ (\mbox{error}=\mbox{false}) 
 +\end{equation*} 
 + 
 +whose validity we need to prove. ​ We here assume that F contains only linear arithmetic. ​ Note: we can check satisfiability of $F\ \land\ (\mbox{error}=\mbox{true})$. ​ We show an algorithm to check this satisfiability. 
 + 
 +==== Quantifier Presburger arithmetic ==== 
 + 
 +Here is the grammar: 
 + 
 +  var = x | y | z | ...                    (variables) 
 +  K = ... | -2 | -1 | 0 | 1 | 2 | ...      (integer constants) 
 +  T ::= var | T + T | K * T                (terms) 
 +  A ::= T=T | T <= T                       ​(atomic formulas) 
 +  F ::= A  |  F & F |  F|F  |  ~F          (formulas) 
 + 
 +To get full Presburger arithmetic, allow existential and universal quantifiers in formula as well. 
 + 
 +Note: we can assume we have boolean variables (such as '​error'​) as well, because we can represent them as 0/1 integers. 
 + 
 +Satisfiability of quantifier-free Presburger arithmetic is decidable. 
 + 
 +Proof: small model theorem. 
 + 
 +==== Small model theorem for Quantifier-Free Presburger Arithmetic (QFPA) ==== 
 + 
 +First step: transform to disjunctive normal form. 
 + 
 +Next: reduce to integer linear programming:​ 
 +\begin{equation*} 
 +  A\vec x = \vec b, \qquad \vec x \geq \vec 0 
 +\end{equation*} 
 +where $A \in {\cal Z}^{m,n}$ and $x \in {\cal Z}^n$. 
 + 
 +Then solve integer linear programming (ILP) problem 
 +  * [[wk>​Integer Linear Programming]] 
 +  * online book chapter on ILP 
 +  * [[http://​www.gnu.org/​software/​glpk/​|GLPK]] tool 
 + 
 +We can prove small model theorem for ILP - gives bound on search. 
 + 
 +Short proof by {{papadimitriou81complexityintegerprogramming.pdf|Papadimitriou}}:​ 
 +  * solution of Ax=b (A regular) has as components rationals of form p/q with bounded p,q 
 +  * duality of linear programming 
 +  * obtains bound $M = n(ma)^{2m+1}$,​ which needs $\log n + (2m+1)\log(ma)$ bits 
 +  * we could encode the problem into SAT: use circuits for addition, comparison etc. 
 + 
 +Note: if small model theorem applies to conjunctions,​ it also applies to arbitrary QFPA formulas. ​  
 + 
 +Moreover, one can improve these bounds. ​ One tool based on these ideas is [[http://​www.cs.cmu.edu/​~uclid/​|UCLID]]. 
 + 
 +Alternative:​ enumerate disjuncts of DNF on demand, each disjunct is a conjunction,​ then use ILP techniques (often first solve the underlying linear programming problem over reals). ​ Many SMT tools are based on this idea (along with Nelson-Oppen combination:​ next class). 
 +  * [[http://​www.cs.nyu.edu/​acsys/​cvc3/​download.html|CVC3]] (successor of CVC Lite) 
 +  * [[http://​combination.cs.uiowa.edu/​smtlib/​|SMT-LIB]] Standard for formulas, competition 
 + 
 + 
 +==== Full Presburger arithmetic ==== 
 + 
 +Full Presburger arithmetic is also decidable. 
 + 
 +Approaches:​ 
 +  * Quantifier-Elimination (Omega tool from Maryland) - see homework 
 +  * Automata Theoretic approaches: LASH, MONA (as a special case) 
 + 
 +===== Papers ​=====
  
   * Verification condition generation in Spec#: http://​research.microsoft.com/​~leino/​papers/​krml157.pdf   * Verification condition generation in Spec#: http://​research.microsoft.com/​~leino/​papers/​krml157.pdf
Line 93: Line 237:
   * Presburger Arithmetic (PA) bounds: {{papadimitriou81complexityintegerprogramming.pdf}}   * Presburger Arithmetic (PA) bounds: {{papadimitriou81complexityintegerprogramming.pdf}}
   * Specializing PA bounds: http://​www.lmcs-online.org/​ojs/​viewarticle.php?​id=43&​layout=abstract   * Specializing PA bounds: http://​www.lmcs-online.org/​ojs/​viewarticle.php?​id=43&​layout=abstract
-