LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav07_lecture_23 [2007/07/02 17:13]
simon.blanchoud
sav07_lecture_23 [2007/07/02 17:51]
simon.blanchoud
Line 71: Line 71:
 We also define $S_I$ as the set of all possibly called methods that we can build using the following formula : We also define $S_I$ as the set of all possibly called methods that we can build using the following formula :
 \[ main  \in S_I \bigwedge_{m \in M} \left ( m \in S_I \wedge p \in calls(m) \right ) \Rightarrow S_p \subseteq S_I \bigwedge_{m \in M} m \in S_I \Rightarrow inst(m) \subseteq S_I \] \[ main  \in S_I \bigwedge_{m \in M} \left ( m \in S_I \wedge p \in calls(m) \right ) \Rightarrow S_p \subseteq S_I \bigwedge_{m \in M} m \in S_I \Rightarrow inst(m) \subseteq S_I \]
 +
  
  
Line 104: Line 105:
 In this particular case, the fixpoint is : $Atom \cup And(res, res) \cup Not(res) \subseteq res$ which computes correctly the fact that the $Or$ has been removed. In this particular case, the fixpoint is : $Atom \cup And(res, res) \cup Not(res) \subseteq res$ which computes correctly the fact that the $Or$ has been removed.
  
-This example shows that we can use set constraints to create type systems !+This example shows that we can use set constraints to create type systems ! Read the following papers for more information : 
 + 
 +  * [[http://​theory.stanford.edu/​~aiken/​publications/​papers/​fpca93.ps|Type inference]]. ​ Semantics of untyped lambda calculus. 
 +  * [[http://​theory.stanford.edu/​~aiken/​publications/​papers/​popl94.ps|Soft typing with conditional types]] 
 + 
 +Modularity: [[http://​doi.acm.org/​10.1145/​316686.316703|Componential set-based analysis]] 
 + 
  
  
Line 116: Line 124:
   * reduction to term algebras ({{http://​theory.stanford.edu/​~aiken/​publications/​papers/​popl02.pdf|First-order theory of structural subtyping}})   * reduction to term algebras ({{http://​theory.stanford.edu/​~aiken/​publications/​papers/​popl02.pdf|First-order theory of structural subtyping}})
  
-Deciding monadic class (({{bachmairetal93setconstraintsmonadicclass.ps|Set constraints are the monadic class}})) +==== Term Algebras ==== 
-  * reduction to boolean algebras ​(MSOL fragmenthas QE+ 
-  * small model property +  * $L = \lbrace a, f, \ldots \rbrace$ 
-  * resolution variants+  * $H$ : set of all ground terms 
 +  * First-order theory : $\forall x \exist y . f(f(a,a), x) = f(y, a) \wedge y \neq a$ 
 +This is First-Order Logic (FOL) with variables ! We can relate this to set constraints 
 + 
 + 
 +==== Monadic Class of FOL ==== 
 + 
 + MFOL(({{bachmairetal93setconstraintsmonadicclass.ps|Set constraints are the monadic class}})) ​ has : only unary predicates, no function symbol, quatifiers and logic. 
 + 
 +Translating this to our sets language :  
 +  F := S = S 
 +     | S ⊆ S 
 +     | card(S) ≥ k 
 +     | card(S) = k 
 +     | F ∧ F 
 +     | ¬ F 
 +     | ∃v.F 
 +  S := v 
 +     | S ∪ S 
 +     | S ∩ S 
 +     | S' 
 +     | ∅ 
 +     | 1 
 + 
 + Where : 
 +  * $card(S) \geq k$ is syntactic sugar to represent a unary operatoras $k$ is not a variable, that compare the cardinality of $S$ with $k$ 
 +  * $k \geq 0$ is an integer 
 +  * $S'$ is the complement set of $S$ 
 +  * $1$ represents the whole universe 
 + 
 + In order to agree with our definitions of set constraints,​ we need to eliminate : 
 +  * $S_1 = S_2 \rightarrow S_1 \subseteq S_2 \wedge S_2 \subseteq S_1 $ 
 +  * $S_1 \subseteq S_2 \rightarrow card(S_1 \cup S_2'= 0$ 
 + 
 +We then have to be able to represent the following formulas : 
 +  * $\neg(card(s) \geq k) \rightarrow \bigvee_{i=0}^{k-1} card(S) = i$ 
 +  * $\neg(card(s) = k) \rightarrow card(S) \geq k+1 \vee \bigvee_{i=0}^{k-1} card(S) = i$ 
 + 
 +We can then perform quantifier elimination. Note that this is not possible in case we do not have the $card$ operator : \[\exists v.card(S_1 \cap v) = k_1 \wedge card(S_1 \cap v') = k_2 \Rightarrow card(S_1) = k_1 + k_2\] 
 + 
 +After elimination of the quantifiers,​ deciding the result of the formula is trivial. 
 + 
 +If we add to our language the possibility ot replace $k$ by $card(S)$ then this new language is still decidable and is equivalent to Presbulgarian arithmetic !