LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav07_lecture_18 [2007/05/28 21:13]
vasu.singh
sav07_lecture_18 [2007/05/29 00:37]
vasu.singh
Line 27: Line 27:
 This suggests that the two programs above are not equivalent for the purpose of reasoning This suggests that the two programs above are not equivalent for the purpose of reasoning
 in concurrently executing programs. in concurrently executing programs.
 +
 +
 +
 +
 +
 +
 +
 +
 +
  
  
Line 38: Line 47:
      c ::= [r]  |  c[]c  |  c;c  |  c*  |  c||c  |  atomic(c)      c ::= [r]  |  c[]c  |  c;c  |  c*  |  c||c  |  atomic(c)
  
-We express the semantics of c as the set of all possible sequences of relations of c.+We express the semantics of c, $[[c]] \subseteq 2^{R^*}$ ​as the set of all possible sequences of relations of c.
 $[[c]] =  { r_1^1 r_2^1 \ldots r_{n1}^1, r_1^2 r_2^2 \ldots r_{n2}^2, \ldots, r_1^l r_2^2 \ldots r_{nk}^k}$. $[[c]] =  { r_1^1 r_2^1 \ldots r_{n1}^1, r_1^2 r_2^2 \ldots r_{n2}^2, \ldots, r_1^l r_2^2 \ldots r_{nk}^k}$.
  
-$[[ [r] ]] = \{ r \}$+$[[\, [r]\, ]] = \{ r \}$
  
-$[[C1C2]] = [[C1]] [[C2]] = \{r_1 \ldots r_n s_1 \ldots s_m | r_i \in [[C1]] and s_j \in [[C2]] \}$+$[[C_1C_2]] = [[C_1]] [[C_2]] = \{r_1 \ldots r_n s_1 \ldots s_m | r_i \in [[C_1]] and s_j \in [[C_2]] \}$
 (This is similar to a language theoretic approach, where we express the concatenation of two languages $L_1$ and $L_2$ as  (This is similar to a language theoretic approach, where we express the concatenation of two languages $L_1$ and $L_2$ as 
 $L1.L2 = \{w_1 w_2 \mid w_1 \in L_1$ and $w_2 \in L_2 \}$. $L1.L2 = \{w_1 w_2 \mid w_1 \in L_1$ and $w_2 \in L_2 \}$.
  
 +$[[C_1 [] C_2 ]] = [[C_1]] \cup [[C_2]]$.
 +
 +Let $A = \{bar, rab\}$ and $B = \{bara\}$. Then $A.B = \{barbara, rabbara\}$ and $A \cup B = \{bar, rab, bara\}$.
 +
 +$[[ C_1 || C_2 ]] = \bigcup {\{I(S_1,​S_2)\}}$ where $S_1 = [[C_1]]$ and $S_2 = [[C_2]]$, where 
 +
 +$I(S_1,S_2) = \{S_1^1, S_2^1, \ldots, S_1^n, S_2^n \mid S_1 = S_1^1 S_1^2 \ldots S_1^n$ and $S_2 = S_2^1 S_2^2 \ldots S_2^n \}$.
 +
 +$[[ C^* ]] = \cup_{n \ge 0} [[C^n]]$ where $[[C^0]] = \emptyset$ and $[[C^{n+1}]] = [[ C^n ; C]]$.
 +
 +$[[ $atomic$(C) ]] = $eval$([[C]])$ where eval is a function $eval: 2^{R^*} \rightarrow R$ such that
 +eval$(\{r_1^1 \ldots r_{n1}^1, r_1^2 \ldots r_{n2}^2, \ldots, r_1^k \ldots r_{nk}^k \}) = (r_1^1 \circ r_1^2 \ldots \circ r_{n1}^1) \cup \ldots \cup (r_1^k \circ
 +r_2^k \ldots \circ r_{nk}^k)$.
 +
 +An example ​
 +
 +  { b = x + y }
 +  while (*) do
 +    if (*) then
 +      x++;
 +      y--;
 +    else
 +      y++;
 +      x--;
 +    endif
 +  end
 +  ||
 +  while (*) do
 +    if (*) then
 +      atomic{ ​
 +        x++;
 +        y--;
 +      }
 +    else
 +      atomic{
 +        y++;
 +        x--;
 +      }
 +    endif
 +  end
 +  { b = x + y }
  
 ==== Global reachability invariants ==== ==== Global reachability invariants ====