LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
regular_expressions_for_automata_with_parallel_inputs [2009/04/28 20:24]
vkuncak
regular_expressions_for_automata_with_parallel_inputs [2009/04/28 20:27]
vkuncak
Line 16: Line 16:
 on such alphabets. on such alphabets.
  
-Example: ​$\Sigma = \{0,1\}$. Let $n=3$.  ​+ 
 +====== Using Propositional Formulas to Denote Finite Sets of Symbols ====== 
 + 
 +Suppose ​$\Sigma = \{0,1\}$. 
 + 
 +Let $n=3$.  ​
  
 $\Sigma^3 = \{ (0,​0,​0),​(0,​0,​1),​\ldots,​(1,​1,​1) \}$. $\Sigma^3 = \{ (0,​0,​0),​(0,​0,​1),​\ldots,​(1,​1,​1) \}$.
Line 77: Line 82:
    ​\right)    ​\right)
 \] \]
-The bitwise and relation is given by+The bitwise ​**and** relation, shown above, ​is given by
 \[ \[
     [z \leftrightarrow (x \land y)]^*     [z \leftrightarrow (x \land y)]^*
Line 105: Line 110:
 where $p(v_1,​\ldots,​v_n)$ is a propositional formula and $(a_{i1},​\ldots,​a_{in})$ for $1 \leq i \leq k$ are all tuples of values of propositional variables for which $p(v_1,​\ldots,​v_n)$ is true. where $p(v_1,​\ldots,​v_n)$ is a propositional formula and $(a_{i1},​\ldots,​a_{in})$ for $1 \leq i \leq k$ are all tuples of values of propositional variables for which $p(v_1,​\ldots,​v_n)$ is true.
  
-Notational advantage: the set of variables ​can be larger, the expression ​is still the same.+Notational advantage: ​even if we increase ​the number ​of components by adding new variables, the expression ​remains ​the same.