LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
msol_over_strings [2007/05/27 12:43]
vaibhav.rajan
msol_over_strings [2007/05/27 13:27]
vaibhav.rajan
Line 29: Line 29:
   [\![\exists v. F]\!]e &=& \exists S. S\ \mbox{is finite}\ \land\ S \subseteq N_0 \land [\![F]\!](e[v \mapsto S])   [\![\exists v. F]\!]e &=& \exists S. S\ \mbox{is finite}\ \land\ S \subseteq N_0 \land [\![F]\!](e[v \mapsto S])
 \end{eqnarray*} \end{eqnarray*}
 +
 +
  
  
Line 42: Line 44:
   * Intersection:​ $(A = B \cap C) = (A \subseteq B \land A \subseteq C) \land (\forall A_1. A_1 \subseteq B \land A_1 \subseteq C \rightarrow A_1 \subseteq A)$   * Intersection:​ $(A = B \cap C) = (A \subseteq B \land A \subseteq C) \land (\forall A_1. A_1 \subseteq B \land A_1 \subseteq C \rightarrow A_1 \subseteq A)$
   * Union: $(A = B \cup C) = (B \subseteq A \land C \subseteq A) \land (\forall A_1. B \subseteq A_1 \land C \subseteq A_1 \rightarrow A \subseteq A_1)$   * Union: $(A = B \cup C) = (B \subseteq A \land C \subseteq A) \land (\forall A_1. B \subseteq A_1 \land C \subseteq A_1 \rightarrow A \subseteq A_1)$
-  * Set difference: $(A = B \setminus C) = (A \cup C = B \land A \cap C = \emptyset)$+  * Set difference: $(A = B \setminus C) = (A \cup (B \cap C= B \land A \cap C = \emptyset)$
     (or just use element-wise definitions with singletons)     (or just use element-wise definitions with singletons)
   * If $k$ is a fixed constant, properties $\mbox{card}(A) \geq k$, $\mbox{card}(A)\leq k$, $\mbox{card}(A)=k$   * If $k$ is a fixed constant, properties $\mbox{card}(A) \geq k$, $\mbox{card}(A)\leq k$, $\mbox{card}(A)=k$
Line 55: Line 57:
 \end{equation*} \end{equation*}
  
 +This does not give the smallest set containing both $u$ and $v$. The reflexive transitive closure, T is:
 +\begin{equation*}
 +(F \subseteq T )\land (\forall x. x \in S \rightarrow (x,x) \in T ) \land ((\exists k.(u,k) \in T \land (k,v) \in T) \rightarrow ((u,v) \in T))
 +\end{equation*}
 +The underlying smallest set S containing $u$ and $v$ is given by:
 +\begin{equation*}
 +S = \{x | \exists k. ((k, x) \in T \lor (x,k) \in T) \}
 +\end{equation*} ​
 **Using transitive closure and successors:​** **Using transitive closure and successors:​**
   * Constant zero: $(x=0) = One(x) \land \lnot (\exists y. One(y) \land s(y,x))$   * Constant zero: $(x=0) = One(x) \land \lnot (\exists y. One(y) \land s(y,x))$