LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
msol_over_strings [2007/05/10 18:14]
vkuncak
msol_over_strings [2007/05/11 16:58]
ghid.maatouk
Line 1: Line 1:
 ====== MSOL over Strings ====== ====== MSOL over Strings ======
 +
  
  
Line 25: Line 26:
   [\![F_1 \lor F_2]\!]e &=& [\![F_1]\!]e\ \lor\ [\![F_2]\!]e \\ \   [\![F_1 \lor F_2]\!]e &=& [\![F_1]\!]e\ \lor\ [\![F_2]\!]e \\ \
   [\![\lnot F]\!]e &=& \lnot ([\![F]\!]e) \\ \   [\![\lnot F]\!]e &=& \lnot ([\![F]\!]e) \\ \
-  [\![\exists v. F]\!]e &=& \exists S. S \mbox{is finite}\ \land\ S \subseteq N_0. [\![F]\!](e[v \mapsto S])+  [\![\exists v. F]\!]e &=& \exists S. S\mbox{is finite}\ \land\ S \subseteq N_0. [\![F]\!](e[v \mapsto S])
 \end{eqnarray*} \end{eqnarray*}
 +
  
 ===== What can we express in MSOL over strings ===== ===== What can we express in MSOL over strings =====
Line 45: Line 47:
 **Transitive closure of a relation.** If $F(x,y)$ is a formula on singletons, we define reflexive transitive closure as follows. ​ Define shorthand **Transitive closure of a relation.** If $F(x,y)$ is a formula on singletons, we define reflexive transitive closure as follows. ​ Define shorthand
 \begin{equation*} \begin{equation*}
-  \mbox{Closed}(S,​R) = (\forall x,y. One(x) \land One(y) \land x \in S \land F(x,y) \rightarrow y \in S)+  \mbox{Closed}(S,​F) = (\forall x,y. One(x) \land One(y) \land x \in S \land F(x,y) \rightarrow y \in S)
 \end{equation*} \end{equation*}
 Then $(u,v) \in \{(x,y) \mid F(x,y)\}^*$ is defined by Then $(u,v) \in \{(x,y) \mid F(x,y)\}^*$ is defined by
 \begin{equation*} \begin{equation*}
-  \forall S. u \in S \land \mbox{Closed}(S,​R) \rightarrow v \in S+  \forall S. u \in S \land \mbox{Closed}(S,​F) \rightarrow v \in S
 \end{equation*} \end{equation*}
  
 **Using transitive closure and successors:​** **Using transitive closure and successors:​**
   * Constant zero: $(x=0) = One(x) \land \lnot (\exists y. One(y) \land s(y,x))$   * Constant zero: $(x=0) = One(x) \land \lnot (\exists y. One(y) \land s(y,x))$
-  * Addition by constant: $(x = y + c) = (\exists y_1,​\ldots,​y_{c-1}. s(y,y_1) \land s(y_1,y_2) \land \ldots \land s(y_{k-1},x))$+  * Addition by constant: $(x = y + c) = (\exists y_1,​\ldots,​y_{c-1}. s(y,y_1) \land s(y_1,y_2) \land \ldots \land s(y_{c-1},x))$
   * Ordering on positions in the string: $(u \leq v) = ((u,v) \in \{(x,​y)|s(x,​y))\}^*$   * Ordering on positions in the string: $(u \leq v) = ((u,v) \in \{(x,​y)|s(x,​y))\}^*$
   * Reachability in $k$-increments,​ that is, $\exists k \geq 0. y=x + c\cdot k$: $\mbox{Reach}_c(u,​v) = ((u,v) \in \{(x,y)\mid y=x+c\})$   * Reachability in $k$-increments,​ that is, $\exists k \geq 0. y=x + c\cdot k$: $\mbox{Reach}_c(u,​v) = ((u,v) \in \{(x,y)\mid y=x+c\})$