LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
msol_over_strings [2007/05/06 19:04]
vkuncak
msol_over_strings [2007/05/10 18:14]
vkuncak
Line 1: Line 1:
 ====== MSOL over Strings ====== ====== MSOL over Strings ======
 +
  
 ===== Syntax and Semantics of Weak Monadic Second-Order Logic over Strings ===== ===== Syntax and Semantics of Weak Monadic Second-Order Logic over Strings =====
Line 22: Line 23:
   [\![v_1 \subseteq v_2]\!]e &=& (e(v_1) \subseteq e(v_2)) \\ \   [\![v_1 \subseteq v_2]\!]e &=& (e(v_1) \subseteq e(v_2)) \\ \
   [\![s(v_1,​v_2)]\!]e &=& (\exists k \in N_0. e(v_1) = \{k\} \land e(v_2)=\{k+1\}) \\ \   [\![s(v_1,​v_2)]\!]e &=& (\exists k \in N_0. e(v_1) = \{k\} \land e(v_2)=\{k+1\}) \\ \
-  [\![F_1 \lor F_2]\!]e &=& [\![F_1]\!]e\ \land\ [\![F_2]\!]e \\ \+  [\![F_1 \lor F_2]\!]e &=& [\![F_1]\!]e\ \lor\ [\![F_2]\!]e \\ \
   [\![\lnot F]\!]e &=& \lnot ([\![F]\!]e) \\ \   [\![\lnot F]\!]e &=& \lnot ([\![F]\!]e) \\ \
-  [\![\exists v. F]\!] &=& \exists S \subseteq N_0. [\![F]\!](e[v \mapsto S])+  [\![\exists v. F]\!]&=& \exists ​S. S \mbox{is finite}\ \land\ ​S \subseteq N_0. [\![F]\!](e[v \mapsto S])
 \end{eqnarray*} \end{eqnarray*}
  
Line 30: Line 31:
  
 **Set operations**. ​ The ideas is that quantification over sets with $\subseteq$ gives us the full Boolean algebra of sets. **Set operations**. ​ The ideas is that quantification over sets with $\subseteq$ gives us the full Boolean algebra of sets.
-  * Two sets are equal: $(S_1 = S_2) = (S_1 \subeteq ​S_2) \land (S_2 \subseteq S_1)$+  * Two sets are equal: $(S_1 = S_2) = (S_1 \subseteq ​S_2) \land (S_2 \subseteq S_1)$
   * Strict subset: $(S_1 \subset S_2) = (S_1 \subseteq S_2) \land \lnot (S_2 \subseteq S_1)$   * Strict subset: $(S_1 \subset S_2) = (S_1 \subseteq S_2) \land \lnot (S_2 \subseteq S_1)$
   * Set is empty: $(S=\emptyset) = \forall S_1. S \subseteq S_1$   * Set is empty: $(S=\emptyset) = \forall S_1. S \subseteq S_1$