Lab for Automated Reasoning and Analysis LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

using_automata_to_decide_presburger_arithmetic [2009/04/29 10:53]
vkuncak
using_automata_to_decide_presburger_arithmetic [2015/04/21 17:26] (current)
Line 28: Line 28:
   v:  1 0 0 0 0   v:  1 0 0 0 0
 This string represents the satisfying assignment $\{(x,4),\ (y,3),\ (z,4),\ (v,1)\}$ for the above formula. If we take the valid formula This string represents the satisfying assignment $\{(x,4),\ (y,3),\ (z,4),\ (v,1)\}$ for the above formula. If we take the valid formula
-\[+\begin{equation*}
    \lnot (x = y + v \land z = y + v\ \land\ v=1)\ \lor\ (x = z)    \lnot (x = y + v \land z = y + v\ \land\ v=1)\ \lor\ (x = z)
-\]+\end{equation*}
 the corresponding automaton accepts all strings. **(End of example.)** the corresponding automaton accepts all strings. **(End of example.)**
  
Line 83: Line 83:
 Therefore, to check if $F$ is satisfiable,​ we construct $A(F)$ automaton and check whether the graph of $A(F)$ has a reachable accepting state. Therefore, to check if $F$ is satisfiable,​ we construct $A(F)$ automaton and check whether the graph of $A(F)$ has a reachable accepting state.
  
 +**Example:​** Step-by-step construction of automaton for 
 +\begin{equation*}
 +   \lnot (x = y + v \land z = y + v\ \land\ v=1)\ \lor\ (x = z)
 +\end{equation*}
  
 
using_automata_to_decide_presburger_arithmetic.txt · Last modified: 2015/04/21 17:26 (external edit)