Lab for Automated Reasoning and Analysis LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

sav08:interpolants_from_resolution_proofs [2008/03/18 10:49]
tatjana
sav08:interpolants_from_resolution_proofs [2008/03/26 20:26] (current)
piskac
Line 21: Line 21:
     * if $q \in FV(A) \setminus FV(B)$ then $I(C) = I(C_1) \lor I(C_2)$     * if $q \in FV(A) \setminus FV(B)$ then $I(C) = I(C_1) \lor I(C_2)$
     * if $q \in FV(B) \setminus FV(A)$ then $I(C) = I(C_1) \land I(C_2)$     * if $q \in FV(B) \setminus FV(A)$ then $I(C) = I(C_1) \land I(C_2)$
-    * if $q \in FV(A) \cap FV(B)$ then $I(C) = ite(q,I(C_2),I(C_1))$+    * if $q \in FV(A) \cap FV(B)$ then $I(C) = ite(q,I(C_1),I(C_2))$
  
 We prove that $I(C)$ has the desired property by induction on the structure of the resolution proof tree. We prove that $I(C)$ has the desired property by induction on the structure of the resolution proof tree.
 
sav08/interpolants_from_resolution_proofs.txt · Last modified: 2008/03/26 20:26 by piskac
 
© EPFL 2018 - Legal notice