LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:substitution_theorems_for_propositional_logic [2008/03/10 19:35]
vkuncak
sav08:substitution_theorems_for_propositional_logic [2008/03/11 16:11]
vkuncak
Line 4: Line 4:
  
 Called metatheorems,​ because they are not formulas //within// the logic, but formulas //about// the logic. Called metatheorems,​ because they are not formulas //within// the logic, but formulas //about// the logic.
 +
 +From semantics we can prove the following lemma by induction.
 +
 +Lemma: if $I_1(p) = I_2(p)$ for every $p \in FV(F)$, then $e(F)(I_1)=e(F)(I_2)$.
  
 ===== Substitutions ===== ===== Substitutions =====
Line 38: Line 42:
 ++++ ++++
  
-Corollary: if $\models F$, then $\models (subst(\sigma)(F))$ for every substitution $\sigma$. +Corollary ​(tautology instances): if $\models F$, then $\models (subst(\sigma)(F))$ for every variable ​substitution $\sigma$.
- +
-Corrollary: if $I_1(p) = I_2(p)$ for every $p \in FV(F)$, then $e(F)(I_1)=e(F)(I_2)$.+
  
 We say that two formulas are equivalent if $\models (F \leftrightarrow G)$. We say that two formulas are equivalent if $\models (F \leftrightarrow G)$.
- 
 **Lemma**: If $\models (F \leftrightarrow G)$ then for every interpretation $I$ we have $e(F)(I) = e(G)(I)$. **Lemma**: If $\models (F \leftrightarrow G)$ then for every interpretation $I$ we have $e(F)(I) = e(G)(I)$.
  
-**Theorem on instantiating equivalences**: if $\models (F \leftrightarrow G)$ and $\sigma$ is a variable substitution,​ then +From the tautology instances Corrolary we obtain. 
-\[ + 
-    ​\models (subst(\sigma)(F) \leftrightarrow subst(\sigma)(G) +Corollary: if $\models (F \leftrightarrow G)$ and $\sigma$ is a variable substitution,​ then $\models (subst(\sigma)(F) \leftrightarrow subst(\sigma)(G))$. 
-\] + 
-Does the theorem hold if $\sigma$ is not variable substitution?​+Does the theorem hold if $\sigma$ is ++not variable substitution?​|No, because a general substitution could produce an arbitrary formula.++
  
 This theorem was about transforming formulas from the outside, ignoring the structure of certain subformulas. This theorem was about transforming formulas from the outside, ignoring the structure of certain subformulas.
Line 59: Line 60:
  
 **Theorem on Substituting Equivalent Subformulas**:​ if $\sigma$ is equivalence-preserving,​ then for every formula $F$ we have $\models (F \leftrightarrow (subst(\sigma)(F))$. **Theorem on Substituting Equivalent Subformulas**:​ if $\sigma$ is equivalence-preserving,​ then for every formula $F$ we have $\models (F \leftrightarrow (subst(\sigma)(F))$.
-