LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
Next revision Both sides next revision
sav08:substitution_theorems_for_propositional_logic [2008/03/10 19:35]
vkuncak
sav08:substitution_theorems_for_propositional_logic [2008/03/11 16:09]
vkuncak
Line 4: Line 4:
  
 Called metatheorems,​ because they are not formulas //within// the logic, but formulas //about// the logic. Called metatheorems,​ because they are not formulas //within// the logic, but formulas //about// the logic.
 +
 +From semantics we can prove the following lemma by induction.
 +
 +Lemma: if $I_1(p) = I_2(p)$ for every $p \in FV(F)$, then $e(F)(I_1)=e(F)(I_2)$.
  
 ===== Substitutions ===== ===== Substitutions =====
Line 38: Line 42:
 ++++ ++++
  
-Corollary: if $\models F$, then $\models (subst(\sigma)(F))$ for every substitution $\sigma$.+Corollary: if $\models F$, then $\models (subst(\sigma)(F))$ for every variable ​substitution $\sigma$.
  
-Corrollary: if $I_1(p) = I_2(p)$ for every $\in FV(F)$, then $e(F)(I_1)=e(F)(I_2)$.+Corollary: if $\models ​(F \leftrightarrow G)$ and $\sigmais a variable substitution, then $\models ​(subst(\sigma)(F) \leftrightarrow subst(\sigma)(G)$. 
 + 
 +Does the theorem hold if $\sigma$ is ++not a variable substitution?​|No,​ because a general substitution could produce an arbitrary formula.++
  
 We say that two formulas are equivalent if $\models (F \leftrightarrow G)$. We say that two formulas are equivalent if $\models (F \leftrightarrow G)$.
- 
-**Lemma**: If $\models (F \leftrightarrow G)$ then for every interpretation $I$ we have $e(F)(I) = e(G)(I)$. 
- 
-**Theorem on instantiating equivalences**:​ if $\models (F \leftrightarrow G)$ and $\sigma$ is a variable substitution,​ then 
-\[ 
-    \models (subst(\sigma)(F) \leftrightarrow subst(\sigma)(G) 
-\] 
-Does the theorem hold if $\sigma$ is not variable substitution?​ 
  
 This theorem was about transforming formulas from the outside, ignoring the structure of certain subformulas. This theorem was about transforming formulas from the outside, ignoring the structure of certain subformulas.
  
 We next justify transforming formulas from inside. We next justify transforming formulas from inside.
 +
  
 We say that $\sigma = \{F_1 \mapsto G_1,​\ldots,​F_n \mapsto G_n\}$ is //​equivalence-preserving//​ iff for all $i$ where $1 \le i \le n$ we have $\models (F_i \leftrightarrow G_i)$. We say that $\sigma = \{F_1 \mapsto G_1,​\ldots,​F_n \mapsto G_n\}$ is //​equivalence-preserving//​ iff for all $i$ where $1 \le i \le n$ we have $\models (F_i \leftrightarrow G_i)$.
  
-**Theorem on Substituting Equivalent Subformulas**: if $\sigmais equivalence-preserving, ​then for every formula ​$F$ we have $\models ​(F \leftrightarrow (subst(\sigma)(F))$.+**Lemma**: If $\models (F \leftrightarrow G)$ then for every interpretation ​$I$ we have $e(F)(I= e(G)(I)$.
  
 +**Theorem on Substituting Equivalent Subformulas**:​ if $\sigma$ is equivalence-preserving,​ then for every formula $F$ we have $\models (F \leftrightarrow (subst(\sigma)(F))$.