LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:substitution_theorems_for_propositional_logic [2008/03/06 13:26]
vkuncak
sav08:substitution_theorems_for_propositional_logic [2015/04/21 17:30] (current)
Line 4: Line 4:
  
 Called metatheorems,​ because they are not formulas //within// the logic, but formulas //about// the logic. Called metatheorems,​ because they are not formulas //within// the logic, but formulas //about// the logic.
 +
 +From semantics we can prove the following lemma by induction.
 +
 +Lemma: if $I_1(p) = I_2(p)$ for every $p \in FV(F)$, then $e(F)(I_1)=e(F)(I_2)$.
  
 ===== Substitutions ===== ===== Substitutions =====
  
 Substitution is a maping formulas to formulas, Substitution is a maping formulas to formulas,
-\[+\begin{equation*}
    ​\sigma : D \to {\cal F}    ​\sigma : D \to {\cal F}
-\]+\end{equation*}
 where $D \subseteq {\cal F}$ is the domain of substitution,​ usually finite. ​ We write it where $D \subseteq {\cal F}$ is the domain of substitution,​ usually finite. ​ We write it
-\[+\begin{equation*}
    ​\sigma = \{F_1 \mapsto G_1,\ldots, F_n \mapsto G_n\}    ​\sigma = \{F_1 \mapsto G_1,\ldots, F_n \mapsto G_n\}
-\]+\end{equation*}
 Let ${\cal S}$ be set of all substitutions.  ​ Let ${\cal S}$ be set of all substitutions.  ​
  
Line 22: Line 26:
  
 For $F \in {\cal F}$ we write $F \sigma$ instead of $subst(\sigma)(F)$,​ so For $F \in {\cal F}$ we write $F \sigma$ instead of $subst(\sigma)(F)$,​ so
-\[+\begin{equation*}
    subst : {\cal S} \to ({\cal F} \to {\cal F})    subst : {\cal S} \to ({\cal F} \to {\cal F})
-\]+\end{equation*}
  
 //Variable substitution//​ is substitution where the domain is a subset of $V$ - it only replaces variables, not complex formulas. //Variable substitution//​ is substitution where the domain is a subset of $V$ - it only replaces variables, not complex formulas.
  
 **Theorem:​** For formula $F$, interpretation $I$ and variable substitution $\sigma = \{p_1 \mapsto F_1,​\ldots,​p_n \mapsto F_n\}$, **Theorem:​** For formula $F$, interpretation $I$ and variable substitution $\sigma = \{p_1 \mapsto F_1,​\ldots,​p_n \mapsto F_n\}$,
-\[+\begin{equation*}
    ​e(subst(\{p_1 \mapsto F_1,​\ldots,​p_n \mapsto F_n\})(F))(I) =     ​e(subst(\{p_1 \mapsto F_1,​\ldots,​p_n \mapsto F_n\})(F))(I) = 
-\]+\end{equation*}
 ++++| ++++|
-\[+\begin{equation*}
    ​e(F)(I[p_1 \mapsto e(F_1)(I),​\ldots,​p_n \mapsto e(F_n)(I)])    ​e(F)(I[p_1 \mapsto e(F_1)(I),​\ldots,​p_n \mapsto e(F_n)(I)])
-\]+\end{equation*}
 ++++ ++++
  
-Corollary: if $\models F$, then $\models (subst(\sigma)(F))$ for every substitution $\sigma$.+**Corollary ​(tautology instances):** if $\models F$, then $\models (subst(\sigma)(F))$ for every variable ​substitution $\sigma$.
  
 We say that two formulas are equivalent if $\models (F \leftrightarrow G)$. We say that two formulas are equivalent if $\models (F \leftrightarrow G)$.
  
-**Lemma**If $\models (F \leftrightarrow G)$ then for every interpretation $I$ we have $e(F)(I) = e(G)(I)$.+**Lemma:** If $\models (F \leftrightarrow G)$ then for every interpretation $I$ we have $e(F)(I) = e(G)(I)$. 
 + 
 +From the tautology instances Corrolary we obtain. 
 + 
 +**Corollary:​** if $\models (F \leftrightarrow G)$ and $\sigma$ is a variable substitution,​ then $\models (subst(\sigma)(F) \leftrightarrow subst(\sigma)(G))$.
  
-**Theorem on instantiating equivalences**:​ if $\models (F \leftrightarrow G)$ and $\sigma$ is a variable substitution,​ then +Does the theorem hold if $\sigma$ is ++not variable substitution?​|No, because a general substitution could produce an arbitrary formula.++
-\[ +
-    \models (subst(\sigma)(F) \leftrightarrow subst(\sigma)(G) +
-\] +
-Does the theorem hold if $\sigma$ is not variable substitution?​+
  
 This theorem was about transforming formulas from the outside, ignoring the structure of certain subformulas. This theorem was about transforming formulas from the outside, ignoring the structure of certain subformulas.