LARA

Differences

This shows you the differences between two versions of the page.

Link to this comparison view

Both sides previous revision Previous revision
Next revision
Previous revision
sav08:relational_semantics_of_procedures [2009/05/26 20:35]
vkuncak
sav08:relational_semantics_of_procedures [2009/05/26 23:06]
vkuncak
Line 62: Line 62:
 In fact, $F^n(\emptyset)$ represents the result of inlining the recursive procedure $n$ times. Therefore, if $s_0$ is the initial state such In fact, $F^n(\emptyset)$ represents the result of inlining the recursive procedure $n$ times. Therefore, if $s_0$ is the initial state such
 that the computation in the procedure terminates within $n$ steps, then $(s_0,s) \in F^n(\emptyset)$ iff $(s_0,s) \in r_{move}$. that the computation in the procedure terminates within $n$ steps, then $(s_0,s) \in F^n(\emptyset)$ iff $(s_0,s) \in r_{move}$.
 +
 +In this example, we have
 +\[
 +   ​r_{move} = \{((x,​y),​(x',​y'​).\ (x > 0 \land x'=0 \land y'​=x+y) \lor (x \le 0 \land x'=x \land y'=y) \}
 +\]
  
 ===== Multiple Mutually Recursive Procedures ===== ===== Multiple Mutually Recursive Procedures =====
Line 143: Line 148:
 The meaning of all procedures is then the tuple $p_* \in {\cal R}^n$ given by $\bigsqcup\limits_{n \ge 0} G^n(\emptyset,​\ldots,​\emptyset)$. The meaning of all procedures is then the tuple $p_* \in {\cal R}^n$ given by $\bigsqcup\limits_{n \ge 0} G^n(\emptyset,​\ldots,​\emptyset)$.
  
-**Remark:** $p_*$ is the least fixpoint of $G$, so by [[sav08:​Tarski'​s Fixpoint Theorem]], it is also the least $p$ such that $G(p) \sqsubseteq p$. Thus, $G(p) \sqsubseteq p$ implies $p_* \sqsubseteq p$.+=== Example === 
 + 
 +In the example above, we can prove that 
 +\[ 
 +   ​r_{even} = \{((x,​wasEven),​(x',​wasEven'​).\ x \ge 0 \land x' = 0 \land 
 +     ​(wasEven'​ \leftrightarrow ((x \mod 2) = 0)) 
 +\] 
 +\[ 
 +   ​r_{odd} = \{((x,​wasEven),​(x',​wasEven'​).\ x \ge 0 \land x' = 0 \land 
 +     ​(wasEven'​ \leftrightarrow ((x \mod 2) \ne 0)) 
 +\] 
 + 
 +=== Remark ​===  
 + 
 +$p_*$ is the least fixpoint of $G$, so by [[sav08:​Tarski'​s Fixpoint Theorem]], it is also the least $p$ such that $G(p) \sqsubseteq p$. Thus, $G(p) \sqsubseteq p$ implies $p_* \sqsubseteq p$.